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Abstract

In Coulter counters, cells counting and volumetry is achieved by monitoring their
electrical print when they flow through a sensing zone. However, the volume mea-
surement may be impaired by the cell dynamics, which may be difficult to control.
In this paper, numerical simulations of the dynamics and electrical signature of red
blood cells in a Coulter counter are presented, accounting for the deformability of
the cells. In particular, a specific numerical pipeline is developed to overcome the
challenge of the multi-scale nature of the problem. It consists in segmenting the
whole computation of the cell dynamics and electrical response in a series of dedi-
cated computations, with a saving of one order of magnitude in computational time.
This numerical pipeline is used with rigid spheres and deformable red blood cells in
an industrial Coulter counter geometry, and compared with experimental measure-
ments. The simulations not only reproduce electrical signatures typical of the those
measured experimentally, but also allow an analysis of the electrical signature in
terms of heterogeneity of the electrical field and dynamics of the particles in the mea-
surement zone. This study provides a methodology for computing the sizing of rigid
or deformable particles by Coulter counter, opening the way to a better understanding
of cells signatures in such devices.

KEYWORDS:
Computational fluid dynamics; Fluid structure interaction; Immersed Boundary Method; Coulter counter;
Impedance measurement; Red blood cells

1 INTRODUCTION

Particle counting and sizing represents a real interest for diseases diagnosis. Indeed, the number and the volume distribution
of Red Blood Cells (RBCs), white blood cells and platelet may change in case of pathology. Hematological parameters may
represent useful pathological markers for clinical decision-making: the RBCs volume distribution varies in case of abnormal
cells subpopulation1. RBCs volume Distribution Width (RDW) and the Mean Cell Volume (MCV) allow a classification of
anemia2, and Yeşil et al. suggest that RDW statistically increases in case of Inflammatory Bowel disease3, for instance.
In 1953, Coulter4 introduced a quick and automatic device dedicated to the numeration of a large number of microscopic

cells and to the measurement of their volume. The principle is depicted in Fig. 1: particles suspended in an electrolytic solution
are pumped into a micro-orifice commonly called sapphire or ruby. An electrical field is imposed with a constant intensity using
two electrodes. According to Ohm’s law, a particle flowing through the sapphire changes the total resistivity of the system and
induces a tension pulse. One particle produces one pulse, and its maximum is generally taken as a measurement of the particle
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FIGURE 1 Principle of a Coulter counter device for particle counting and sizing.

volume. Thus, counting the pulses and measuring their amplitude give the cell concentration and a volume distribution of those
cells.
Analytical studies of Grover et al.5 and Hurley6 show that the change of resistivity caused by the presence of an infinitely

small and insulating particle in a homogeneous electrical field is proportional to its volume:

ΔR =
�efs
S2

V , (1)

with ΔR the resistance variation, V the particle volume, �e the fluid resistivity, S the aperture cross section and fs the particle
shape factor depending on the shape and orientation of the cell. For example, RBCs are able to deform and reorient when
submitted to hydrodynamic forces, which may cause changes in the shape factor. Note that the electrical field in the sensing zone
is not homogeneous owing to the device geometry, as shown in numerical simulations of Isèbe & Nérin7 and the experimental
measurements of Kachel8, contrary to the assumption made in5,6.
Concerning the electrical field inhomogeneity, the experimental observations of Kachel8 support a linear relation between

the squared electrical field and the electrical perturbation, thus leading to a second version of Eq. 1:

ΔR =
E2fs
�ei2

V , (2)

The intensity is denoted by i (see Fig. 1) while E designates the electrical field. As the electrical field varies from small values
far from the orifice to high values in the sensing zone, the electrical pulse measured during the passage of the particle varies
over time, as sketched in Fig. 1.
The volume can thus be determined for specific if and only if the shape factor is known. Analytical developments for the

shape factor are available for the case of particles with simple shapes, such as spheres and ellipsoids5, 9 flowing in a homogenous
electrical field. The model by Velick et al.9 may be applied for any ellipsoid with one of its principal axes aligned with the
electrical field. Breitmeyer et al.10 later modeled the impact of the orientation on the shape factor. Qin et al. retrieved numerically
the impact of the particle orientation on the electrical resistance variation. Golibersuch obtained pulses presenting several peaks
analysing aspherical particles by the use of a Coulter counter with a long aperture11. Those peaks are explained by a rotation of
the particle that induces a periodic variation of the shape factor.
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In summary, the impact of the electrical field inhomogeneity is better understood since Kachel’s publication8 and the shape
factor for simple rigid particles is well characterized. However, an understanding of how deformable particles behave in this
kind of configuration and influences the shape factor evolution is still lacking.
Due to the difficulties in accessing the RBC dynamics within the measurement zone (small sensing region (tens of �m), large

velocity (≈ 5 m.s−1), no optical access, very short time of exposure (10 �s)), numerical simulations would be an appealing way
of studying this question. In addition, simulation allows the control of the input parameters, which is always problematic in
experiments with biological cells. Numerical simulation of the dynamics and deformation of RBCs under flow has tremendously
developed over the last years12,13,14,15 and its application to Coulter counters is expected to yield new insights in the behavior
and the electrical signature of RBCs in the sensing region.
A computation of the entire device is not possible, due to the large number of cells and above all the huge differences in

length and time scales when the entire device is considered. As shown in Fig. 1, the size of the measurement region (where
the electrical field is high enough so that the cell can be detected) is of a few tens of micrometers and cells pass through the
sapphire in a few tens of microseconds. On the contrary, far from the sapphire, they are suspended in a tank of a few centimers
(5 cm) and they flow at velocity of the order of 1.0×10−3 m.s−1. The separation of scales leads to prohibitive computational
times, while the measurement region is actually very limited. An option is to focus on the measurement region only, but cells are
known to deform before being detected by the counter8. This explains why existing numerical simulations have only considered
rigid particles16,7, thus circumventing the challenge of the scale separation by reducing the computational domain to the region
where the impedance signal is detected. This cannot be done when deformable particles are considered.
In this paper, we focus on the simulation of red blood cells, which are the most deformable blood cells. We show that a

specific numerical pipeline is needed to accurately compute the impedance signal of a red blood cell passing through a Coulter
counter. In particular, a method is provided to compute the state of the red blood cells (orientation and shape) when they enter the
measurement zone. Section 2 describes the methodology to compute the impedance pulse associated with the passage of a red
blood cell through an industrial Coulter counter. The framework is detailed and the numerical methods are presented. Section 3
shows how the pipeline can be used to decrease the overall computational time (compared with the brute force strategy where the
whole Coulter counter is computed) and specifies the conditions under which a relevant simulation can be performed. Finally,
section 4 presents numerical results of the computation of rigid and deformable particles in an industrial geometry and compares
the results with both theoretical predictions and experimental data. The accuracy of the method is illustrated and simulations
are shown to provide useful information about the shape factor in the presence of deformation and rotation of cells.

2 FROM THE INDUSTRIAL DESIGN TO THE SIMULATION OF THE IMPEDANCE
PULSE IN A COULTER COUNTER

2.1 Overview of the numerical challenge
This section focuses on the principal issues associated with the simulation of an impedance pulse generated by a deformable
particle in a Coulter counter, and provides an overview of the method proposed to achieve this task.
Figures 2 A and B show the entirety and a slice cut of the fluid domain that corresponds to an industrial hematology automaton

from HORIBAMedical (ABXMicros 60), more precisely the part dedicated to the counting and sizing of the red blood cells in a
blood sample. The information presented in the following are based on the operating regime of the Micros 60. The diluted blood
sample enters by the boundary indicated as inlet and is vacuumed through the outlet surface (Fig. 2A), while the electrical field
is imposed by the electrodes highlighted in Fig. 2B. Examples of electrical and velocity fields obtained by numerical simulation
in this industrial configuration are shown in Fig. 2C and 2D. Inside the micro-orifice, the electrical field is very large due to
the flux conservation law; this is where particles are detected. The aperture allows to concentrate the electrical field so that the
resistance perturbation associated with the passage of a particle is large. In addition, the field decreases rapidly when getting out
of the aperture, so that a microscopic particle is not detected outside of the orifice, which allows the sizing of cells one by one if
the sample is sufficiently diluted. Due to the contraction of the geometry, the velocity inside the aperture is large, which yields
high-throughput measurements, but also generates high velocity gradients and viscous stresses. In particular, high shear stresses
are retrieved near the aperture walls. Due to those shear stresses, deformable particles such as RBCs may undergo rotational
motions and complex deformations17. Before entering in the orifice, the velocity magnitude raises over a short distance, causing
large longitudinal strain, so that RBCs elongate to a prolate ellipsoid shape, as reported by Kachel8 and Gibaud18. Far from the
aperture, velocity gradients are negligible, and no deformation is expected.
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FIGURE 2 A: Fluid domain for red blood cells counting and sizing of ABX Micros 60 (HORIBA Medical). B: Slice cut of
the same geometry. The electrodes used for applying the electrical field in the micro-orifice are highlighted. Typical electrical
field (C) and velocity field (D) around the aperture. Three different streamlines are depicted in C and D, illustrating the various
electrical and velocity field that particles may be subjected to in Coulter counters.

The industrial geometrymay be conceptually divided in three parts, as depicted in Fig. 3. Indeed, the RBCs are first transported
without deformation in the biggest part of the geometry (Part A). Then, they are stretched just before the aperture entrance by
an extensional flow field (Part B). Finally, RBCs are deformed in the micro-orifice while disturbing the electrical field (Part C).
Figure 3 B reports the characteristic RBCs transit time in those three parts in the ABX Micros 60 (HORIBA Medical). In the
method presented in the following, the choice was made to neglect Part A because no deformation nor electrical perturbation is
expected. Thus, only Parts B and C are considered for the modeling. However, as shown in Fig. 3 B, the second part involves a
time scale that is larger than the third one by several orders of magnitude. Therefore, instead of simulating the particle evolution
in the whole domain where deformations occur (Parts B and C), we propose to split the calculation into two simulations. First,
a simulation of the stretching of the cell by a relevant extensional flow is considered. This simulation is referred to as S1. It
mimics the elongation happening in Part B of the geometry. A variable strain rate that mimics that seen by the cell is imposed.
It is extracted from a first simulation S0, performed on the entire geometry without particles. The calculation in the extensional
flow configuration S1 yields a deformed particle, that is used in a second simulation (S2) of the particle dynamics inside the
measurement region (Part C). The particle stretched after S1 is placed near of the orifice entrance in a reduced configuration of
the whole geometry that is a restricted region around the aperture, in order to reduce the computational cost of S2. Finally, the
electrical perturbation is computed by performing a series of electrostatic simulations (S3) using a number of particles position
extracted from S2.
The whole procedure is sketched in Fig. 4. In the following sections, each simulation is detailed. First, the setup used to obtain

the carrying flow (S0) is presented. Then, the particle stretching process (S1) is detailed. Thereafter, the procedure employed to



Taraconat et al. 5

(A)

Part C
RBC deformation +
electrical perturbation

Part B
RBC deformation without
electrical perturbation

Part A
RBC transport
without deformation

(B)

Part Time Scale
A 50s
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C 20�s

FIGURE 3 A: Schematic of the industrial geometry, divided in three parts depending on the existence of particles deformation
and the impact on the electrical field. In Part A, the RBC is simply transported without deformations. In Part B, the particle
may undergo deformations but is far from the detection area. In Part C, the RBC is deformed and disturbs the electrical field. B:
Table presenting characteristic time scales for those three parts, for the case of an ABX Micros 60 (HORIBA Medical).

S0 :
Carrying

flow

S1 : Particle elongation
in an axisymmetrical

extensional flow

S2 : Particle
dynamics inside

the aperture

S3 : Computation of the
electrical perturbation

FIGURE 4 Pipeline for the simulation of the electrical perturbation generated by a deformable particle in a Coulter counter.

compute the particle dynamics inside the micro-orifice is explained (S2). Finally, the electrostatic simulations (S3) performed
to predict the electrical perturbation are described.
In the following, the case of RBCs is handled as an example of application. However, the pipeline displayed in Fig. 4 may be

applied to any deformable particle.

2.2 Simulation without RBC in the entire fluid domain (S0)
The starting point of the numerical pipeline of Fig. 4 is the simulation of the flow in the whole industrial configuration. The
counting tank geometry presented in Fig. 2 includes the aperture where the counting and sizing of RBCs takes place. As already
mentionned, it is very small compared to the whole geometry: 50 �m in diameter and 75 �m long. The origin of the coordinates
system (x⃗,y⃗,z⃗) is located at the center of the micro-orifice. The aperture is aligned with axis x⃗ while y⃗ is included in the middle
slice plane shown in Fig. 2B, 2C and 2D; z⃗ is perpendicular to the (x⃗,y⃗) plane.
The electrolytes generally used in Coulter counters are mostly water and typical Reynolds numbers evaluated in industrial

systems are higher than 100 (based on bulk velocity in the aperture and diameter). Hence, the flow can be predicted using the
Navier-Stokes equations for an incompressible fluid with kinematic viscosity � = 10−6 m2.s−1 and density � = 1000 kg.m−3 :

)u⃗
)t
+ u⃗ ⋅ ∇u⃗ = −

∇p
�
+ ∇ ⋅ [�(∇u⃗ + (∇u⃗)T )] + f⃗ (3)

∇ ⋅ ⃖⃗u = 0 (4)
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FIGURE 5 Time evolution of the velocity gradients observed by a particle moving along the three different streamlines depicted
in Fig. 2, as predicted from the simulation performed on the entire industrial configuration. The graphs A, B and C correspond
to the streamlines passing by points (0,0,0), (0,15�m,0) and (0,20�m,0), and are denoted by SL1, SL2 and SL3 in Fig. 2,
respectively.

where u⃗ denotes the fluid velocity, p the pressure, and f⃗ a possible source term in the momentum equation (in the simulation of
the flow in the entire domain, f⃗= 0⃗)
The Navier-Stokes equations are solved until the flow convergence inside the aperture is reached. The computation is per-

formed imposing a 7.74 × 10−9 m3.s−1 flow rate at the inlet, which corresponds to a pressure drop of 200 mbar between the
upstream and the downstream parts of the micro-orifice. After 50 �s, a stationary flow inside the aperture is obtained. Close
enough to the aperture, the flow field is axisymmetric , of axis x⃗. In the following, the choice of restricting the study to the
symmetrical plane (x⃗,y⃗) was made.
The flow field is computed using an in-house solver named YALES2BIO (http://imag.umontpellier.fr/~yales2bio), dedicated

to the computation of blood flows at the macroscopic19,20,21 and microscopic scales17,22,23,24,25,26. The momentum equation 3
is discretized with a fourth-order finite volume method and advanced in time with a fourth-order Runge-Kutta scheme27. The
divergence-free condition imposed by mass conservation is achieved by a projection-correction algorithm28 that involves the
resolution of a Poisson equation. This Poisson equation is solved by means of a Deflated Preconditioned Conjugate Gradient
algorithm29.

2.3 RBC stretching configuration (S1)
2.3.1 Assumption of an axisymmetric extensional flow in the upstream part
From the simulation performed in the whole domain (S0), three streamlines passing at different distances from the aperture
edges are extracted. More precisely, the selected streamlines are chosen such as they pass through points located in the aperture
at different distances from the wall: (0,0,0), (0,15,0) and (0,20,0), coordinates given in �m. Respectively denoted by SL1, SL2
and SL3, the streamlines are depicted in Fig. 2. The streamlines curvilinear coordinate system (s⃗, r⃗, q⃗) is defined in the following
way : s⃗ is aligned with the streamline; q⃗ is perpendicular to the streamline and belongs to the plane (x⃗, y⃗) and r⃗ = s⃗ ∧ q⃗. Time �
is established from the Lagrangian coordinates system of a fluid particle moving along the selected streamline. Note that time �
= 0 is set in a way that part B and part C (see Fig. 3) refer to negative and positive times, respectively.
The velocity gradients in the curvilinear coordinates system are computed and are shown versus � in Fig. 5. Regarding the

streamline SL1 which crosses the aperture center, Fig. 5A shows that
)Uq
)q

perfectly equals
)Ur
)r

for all the upstream part of the
aperture. This equality remains valid for the other streamlines SL2 and SL3 except for very small negative values of � (viz. except
very close to the aperture inlet). From those observations, the assumption that a particle moving along a streamline behaves as
in an axisymmetric and purely extensional flow up to -12 �s is made.
This assumption is the basis of the S1 simulation type described in the next section.

http://imag.umontpellier.fr/~yales2bio
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FIGURE 6 Extensional configuration scheme (simulation S1). The particle is initially placed at rest in the center of a cylindrical
fluid domain. The cylinder diameter D and length l are respectively equal to 30�m and 50�m. Boundary conditions that insure
an extensional velocity field are set according to Eq. 5.

2.3.2 Extensional configuration setup (S1)
For part B, where the RBC is deformed without impacting the electrical field, a first fluid-structure interaction simulation is
performed in a simplified domain used to impose an axisymmetric strain flow. The RBC is supposed to travel in part B along
the streamline at the surrounding fluid velocity. The particle is initially placed at the center of a cylindrical fluid domain with
possibly a non-zero initial orientation with respect to axis s⃗, as sketched in Fig. 6. From the time evolution of the stretch rate
obtained for a particular streamline (Fig. 5), the following time varying boundary condition is imposed on the lateral boundary
(r2 + q2 = D2

4
, s in [- l

2
, l
2
]) of the cylinder:

u⃗ =
)Us(t)
)s

⎛

⎜

⎜

⎜

⎝

s
− r
2

−
q
2

⎞

⎟

⎟

⎟

⎠

(5)

Convective outlet boundary conditions are imposed on the two circular faces s = -l/2 and s = l/2. According to the axisymmet-
ric extensional assumption discussed previously, the particle stretching is performed until 12�s before the aperture entrance.A
discussion on the elongation starting point is provided in a following section.
The numerical method employed in YALES2BIO to solve this kind of fluid-structure-interaction problem was detailed in

previous publications22,23,24,25,26. Briefly, the particle is defined as a drop of fluid enclosed by a membrane. The membrane is
supposed to be an infinitely thin and elastic solid that resists to in-plane deformations and out-plane bending loads. The in-plane
behavior is modeled according to the Skalak model30 while the bending resistance is expressed with the Helfrich energy31. The
Skalak law expresses the strain energy functionWsk as a function of the in-plane principal values of strain �1 and �2:

Wsk =
Gs
4
[(�21 + �

2
2 − 2)

2 + 2(�21 + �
2
2 − �

2
1�
2
2 − 1)] +

Ea
4
(�21�

2
2 − 1)

2 (6)

Gs and Ea are material parameters and denote respectively the shear and the area modulus. Discretizing the membrane with
triangular elements and making use of the method propounded by Charrier & al.32, the in-plane elastic forces Fsk are computed.
As derived by Zhong-can & al.33, the membrane curvature forces may be written as:

F⃗b = Eb[(2� − co)(2�2 − 2�g + �co) + 2∇s�]n⃗ (7)
� and �s represent respectively the mean and the Gaussian curvatures while ∇s represents the Laplace Beltrami operator and

n⃗ denotes the membrane normal. As for the Skalak model, two material parameters operate in the bending force computation:
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FIGURE 7 Schematic of the axisymmetric reduced configuration for S2. Slice cut of the reduced configuration shown over
a small part of the full configuration. On boundaries indicated as Inlet, a velocity profile interpolated from computation S0 is
imposed. The domain is characterized by l1=75�m, l2=130�m and l3=60�m.

Eb, the bending modulus and co, the spontaneous curvature. More details on the computation of the curvatures may be found in
Farutin et al.34.
The fluid-structure interaction is computed thanks to the Immersed Boundary Method (IBM) of Peskin35. This method is

based on the use of two distinct meshes, one for the fluid and one for the membrane. The grids are not conformal: the Eulerian
fluid grid never changes and describes the entire fluid domain (inside and outside the particle). A Lagrangian mesh is used to
define the membrane of the RBC. It is a surface mesh defined by triangular elements. The vertices of this mesh (the markers of
the membrane) move over time and are generally not at the same location as the fluid nodes. Specific coupling must be performed
to make the fluid grid and the membrane grid interact: in the IBM, the membrane forces F⃗sk and F⃗b are regularized over the fluid
and operate in the velocity advancement through the source term f⃗ in equation 3. At the end of the time step, the membrane
is transported interpolating the fluid velocity on the membrane nodes. Initially developed for regular grids, the use of the IBM
on unstructured fluid meshes is enabled by the Reproducing Kernel Particle Method36. A variable viscosity field may also be
imposed using an indicator function as in the front-tracking method37. Detecting the area enclosed by the membrane, the cytosol
viscosity denoted �in may be taken into account. The method and its implementation in the YALES2BIO solver have been used
in several publications, showing its ability to recover typical dynamics behaviors of red blood cells in complex flows17,25,26,38,39.

2.4 Particle dynamics inside the aperture (S2)
Once stretched during simulation S1, the particle dynamics inside the micro-orifice is solved (simulation S2). The elongated
cell is initially placed on the selected streamline at the point corresponding to time -12�s in a reduced configuration of the
industrial geometry. The particle orientation �sl (Fig. 6) at the end of the stretching step is recorded and applied as initial angle
of the particle with respect to the streamline for the dynamics simulation. The reduced domain is shown in Fig. 7. The initial
velocity field and the boundary conditions on the ’inlet’ surfaces (Fig. 7) are interpolated from of the time-converged velocity
field obtained in simulation S0. On the wall faces, a zero velocity condition is imposed. On the outlet face a convective outlet
boundary condition is imposed to ensure mass conservation. In such a way, a stationary base flow inside the aperture equivalent
to the flow simulated in the whole geometry is retrieved.
The numerical method employed for this fluid-structure interaction calculation is identical to the one used for the extensional

configuration (S1).

2.5 Electrical perturbation (S3)
The computation of the electrical perturbation is performed once the particle dynamics simulation inside the micro-orifice is
achieved. Interactions between the electrical field and the flow field but also the electrostatic forces acting on the membrane are
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FIGURE 8 Reconstruction of the electrical perturbation from the particle dynamics inside the aperture. The left figure shows
typical RBC following positions in the micro-orifice over the velocity field, obtained by numerical simulation. A membrane
geometry coming from S2 is used in an electrostatic simulation, see the middle figure. In the middle figure, one of the RBC
location is shown over the electrical field, outcome of run S3. From the electrostatic simulation the electrical perturbation ΔR
is computed (right figure). Repeating this process for several consecutive membrane positions from S2, the electrical pulse is
build point by point.

neglected7. In addition, the RBC is viewed as a perfectly isolating particle, as done by Isèbe and Nérin7. Those assumptions
allow computing the electrical response separately from the dynamical behavior, since the RBC motions depend only on the
fluid-structure-interactions. From simulation S2, a series of membrane position is stored (typically every microsecond). For each
instant, the membrane shape coming from the dynamics simulation is used to define the position of the cell and the electrostatic
Laplace’s equation for the electrical potential is solved:

∇.[�(x)∇⃗�] = 0 (8)
As for the dynamics part, our method uses a Lagrangian grid for the membrane and an Eulerian grid for the fluid, over which

the Laplace equation is solved. To couple the membrane shape with the electrical field solver, the method used to impose an
internal viscosity different from the outside in dynamics simulations is used: the membrane location allows the definition of a
variable conductivity coefficient (�(x)) different inside and outside the membrane. In order to make the cell isolating, a very
small value of conductivity coefficient is imposed inside the cell. This method has been validated on specific test cases18.
From the electrical potential �, the resistance of the system is deduced and is compared with the resistance of the system

without particle: this yieldsΔR, the resistance variation caused by the presence of the cell in the electrical field. This calculation
is made for several consecutive membrane positions inside the aperture in order to construct the complete electrical perturbation
along time, as shown in Fig. 8.
For all the electrostatic computations performed, the conductivity outside the membrane is taken as �o=2.27 S.m−1 and the

conductivity ratio between the inner and outer parts of the RBC equals 10−12 to reflect the non-conductive nature of the cell.
The electrical potential is set to 13.9V on the cathode and 0.0V on the anode (Fig. 2). The remaining edges of the domain are
modeled as non-conducting walls applying a Neumann boundary condition ∇⃗� = 0⃗.
Concerning the numerical method employed in YALES2BIO to approximate the electrical potential, Eq 8 is discretized with

a second-order method derived from40. Once discretized, the linear system is solved with the same DPCG solver as for the
Poisson equation in the Navier-Stokes simulations29.

3 PIPELINE VALIDATION

The pipeline detailed in the last sections was first tested as explained in this section. From the computation S0, the streamline
shown in Fig. 9A (SL2 in Fig. 2) is extracted and different simulations varying the initial conditions are performed. The computed
cases are summarized in Fig. 9B. In a first study, which corresponds to cases 1 to 4, the impact of the RBC starting time (or the
distance from the aperture at which the cell is deposited, see Fig. 9A) on its dynamics and the resulting impedance pulse is dealt
with. For this study, the particle stretching in the extensional configuration (Simulation S1) is bypassed and the RBC is dropped
directly on the streamline at different positions, in a full simulation S2. The initial positions are related to times corresponding
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2 ø [-330 , 18] 12000 2000
3 ø [-130 , 18] 6500 5000
4 ø [-58 , 18] 4600 12000
5 [-517 , -12] [-12 , 18] 2000 1000

FIGURE 9 Summary of the cases performed to assess the effect of the RBC initial position. A: Initial RBC starting positions
along the selected streamline.The streamline corresponds to SL2 (Fig. 2) and is extracted from the time converged velocity field
of simulation S0. It is selected such as it passes by the point (0, 15, 0). B: Characteristics of the simulations performed in terms
of the physical time range in the extensional configuration (S1) and in the reduced configuration (S2). The overall computation
cost and the typical strain rate (�̇0) experienced by the RBC at the beginning of the simulation are also reported.

to the lower bounds reported in the S2 column of Fig. 9B. Then, the capability of the extensional simulation S1 to reproduce the
dynamics before the aperture is assessed. More precisely, as introduced in section 2, the RBC is first stretched in an extensional
flow simulation S1, then its dynamics inside the orifice is solved in a simulation S2, the final RBC state from S1 being used
as an initial condition for S2. This runs sequence corresponds to Case 5 in Fig. 9B and represents exactly the same physical
configuration as Case 1. On the contrary, Cases 2-4 denote different initial locations of the RBC. Note however that the final
time (�=18 �s) is the same for all cases.
All cases of Fig 9 B were computed using the same RBC. The shear modulus, the bending modulus, the cytosol viscosity and

the spontaneous curvature are imposed as: Gs=2.5× 10−6 N.m−1, Eb=6.0 × 10−19 N.m, �in=10.0 m2.s−1, c0=0, in agreement
with the range of measurements provided in the literature41,42,26. Density variations between the internal fluid and the suspending
medium are neglected: some test cases to assess the impact of higher density inside the RBCs have shown negligible effect
(not shown). The area modulus was set to Ea=2.5× 10−1 N.m−1 in order to guarantee the membrane area conservation30. The
membrane encloses a 93 �m3 volume. The membrane was discretized with triangular elements with a characteristic size of
0.3�m. The initial RBC orientation �sl with respect to the streamline (Fig. 11) is chosen as 0.43rad for all cases excepted for
run 5-S2, where the outcome from run 5-S1 was used. This problem is symmetric with respect to the (x⃗, y⃗) plane, so that the
orientation is only defined by an angle in this plane.
The fluid meshes used are presented in Fig. 10. The computation to obtain the carrying flow is performed on the mesh shown

in Fig. 10A. The mesh size is imposed to 1.6 �m around the micro-orifice and increases with a growth rate of 1.3 to 500�m.
Using the IBM requires a fluid mesh size equal to the membrane mesh size35,36. For the extensional configuration, the mesh size
is simply imposed to 0.3�m in the whole cylinder (Fig. 10B). In the case of the reduced configuration, the mesh size is refined
to 0.3 �m around the streamline, supposed to be a good approximation of the RBC trajectory (Fig. 10C).
For cases 1 to 4, the RBC starting position were willingly placed relatively far from the aperture entrance. A wider reduced

configuration is used for those specific cases with l3=150 �m (Fig. 7). The mesh used for the electrostatic computations is not
shown. It was built in the same way than the mesh shown in Fig. 10A, with an additional mesh refinement of 0.3 �m around the
part of the streamline inside the sensing zone. In the performed cases, the RBCs follow the streamline within a tolerance margin
of 0.3 �m (one mesh size) when traveling in the part upstream of the aperture.
In the following, the Inertia Equivalent Ellipsoid (IEE) of the deforming RBC43 is used to compare the different cases con-

sidered. From the membrane nodes position, the inertia matrix of the RBC at the center of mass is computed and diagonalized
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FIGURE 10 Meshes used for the computation of the whole industrial configuration S0 (A), the extensional configuration S1
(B) and the reduced configuration S2 (C). The meshes shown in graphs A, B and C contain approximately 5M, 0.4M and 3M
of nodes, respectively.
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FIGURE 11 Inertia Equivalent Ellipsoid (IEE) parameters and orientation. IEE parameters are shown over a RBC elongated
shape. The scheme is represented in the symmetrical plane (x⃗, y⃗) such as z⃗ is out of plane, as the IEE parameter c.

in order to obtain the eigenvalues and eigenvectors. The IEE parameters, a, b and c are then obtained by solving the following
equation:

⎛

⎜

⎜

⎝

�1 0 0
0 �2 0
0 0 �3

⎞

⎟

⎟

⎠

= V
5

⎛

⎜

⎜

⎝

(b2 + c2) 0 0
0 (a2 + c2) 0
0 0 (a2 + b2)

⎞

⎟

⎟

⎠

(9)

The left and right terms of Eq 9 are respectively the diagonalized RBC inertia matrix and the empirical inertia matrix of an
ellipsoid of axes a, b and c, with V denoting the IEE volume. Both are expressed in the eigen-vectors basis. The RBC orientation
is defined according to the angle between the IEE axis corresponding to the parameter a and the streamline (�sl) on the one hand
and the x⃗ axis (�) on the other hand (Fig. 11).

3.1 Impact of the starting position on the RBC dynamics
The purpose of this section is to illustrate the dependency of the RBC dynamics with respect to the starting position and to
exhibit a starting distance from which the dynamics inside the aperture and the electrical perturbation are converged.
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From the IEE orientation (Fig. 12A), one observes that for the upstream part of the micro-orifice (� < 0), the RBC initial angle
progressively decreases to show an orientation perfectly aligned with the streamline just before the aperture entrance. However,
inside the micro-orifice, the RBC displays a rotation that depends on the initial starting time. Regarding the ellipsoid parameters
in the upstream part, shown in Fig. 12 B-D, the RBC is deformed from an oblate shape to a quasi-prolate shape. Indeed, initially,
a= c, and both are greater than b. Then, a increases and c decreases whereas b stays almost the same. In the aperture (� > 0), the
RBC is compressed as shown by a decreasing a and an increasing b. This compression occurs as the RBC progressively turns
inside the aperture. In fact, for the considered streamline, the RBC crosses region with substantial velocity shears as shown for
streamline SL2 in Fig. 2D. The shear stress undergone by the RBC inside the aperture makes it rotate. Besides, the RBC gets
compressed when its orientation approaches the compression axis in the shearing region.
The IEE parameters and orientation inside the aperture converge with respect to the RBC starting position. Indeed, taking

case 1 as the reference, cases 2, 3 and 4 indicate that taking an earlier starting time (Fig 9 B) gives a result closer to the reference.
In addition, case 2 shows superimposed results with case 1, regarding the IEE parameters inside the micro-orifice (Fig. 12). This
supports the fact that it is sufficient to use an initial RBC location in the region where the strain rate is of order 2000 s−1 in order
to accurately describe the RBC dynamics within the aperture.
As a direct consequence of the RBC dynamics, the electrical perturbation also exhibits a dependency with the starting time,

as depicted in Fig. 13. As for the IEE parameters, the electrical pulses for cases 1 and 2 are practically identical while cases
with a starting point closer to the orifice entry would give inaccurate results. The difference between case 1 and case 4 maxima
is evaluated to 10%.

3.2 Extensional configuration validation
We now compare cases 1 and 5. In both cases, the RBC is depositted at the same location, but in case 5, the dynamics far from
the aperture is computed in the dedicated extensional configuration (S1) while it is computed in the full configuration in case 1.
First, Fig. 12 shows that the run 5-S1 is in good agreement with the first part (� < - 12 �s) of Case 1. Thus the extensional

axi-symmetrical configuration S1 is proven to be suitable to reproduce the early stage of the RBC deformation. It should be
noted that the orientation corresponding to run 5-S1 in Fig. 12D is evaluated as the orientation of the IEE a-axis with respect
to axis s⃗ of the extensional configuration (Fig. 6). Then, comparing run 5-S2 to case 1, one may observe that a RBC dropped in
the reduced configuration after being stretched in an extensional configuration behaves as if it had undergone the full elongation
before entering in the aperture. Moreover, cases 1 and 5 are perfectly consistent in terms of impedance pulse, as shown in
Fig. 13. The approach of solving separately the particle elongation occurring in part B allows a computation cost reduced by
a factor 8 (cases 1 and 5 Fig. 9B). Regarding the results shown in Fig. 12 and Fig. 13, simulations should start at least 330 �s
before the orifice entrance. Due to the low computation cost of the extensional simulation, the choice was made to simulate the
cell elongation in the configuration S1 from -517 �s to -12 �s. Computation S2 then starts from -12 �s and ends after the RBC
leaves the micro-orifice.

4 APPLICATIONS

A diversity of electrical pulse signatures is reported in the literature. Grover5 obtained "bell-shaped" and "M-shapped" pulses
when using rigid spheres. As it was shown later, for the case of spheres, the pulses shapes depict the electrical field squared along
the particle trajectories8 (see Eq. 2). Considering rigid ellipsoid44, fixed RBC45 or normal RBC44, many complex signatures are
found in addition to the "bell-shaped" and "M-shapped" pulses. Enforcing the particle path, Kachel45 found that those complex
pulses shapes are retrieved for near wall trajectories while "bell-shaped" pulses are obtained for centred paths. Near the aperture
edges, velocity shear causing changes in the shape factor and electrical field inhomogeneities are present. Those edge-effects
are still misunderstood and known to skew the volume measurement of the particles46.
The aim of this section is to illustrate how the numerical pipeline of Section 2 can be used to understand the edge-effects.

In a first part, the numerical results are used for explaining typical pulses signatures obtained with an experimental approach.
Then, a method to derive the RBC shape factor as a post-processing outcome of a numerical simulation is presented. It is then
shown that the computed shape factor evolution and the electrical field observed by a particle can be combined to provide a
good approximation of the pulse signature.



Taraconat et al. 13

(A)

−500 −400 −300 −200 −100 0

0

0.2

0.4

0.6

0.8

τ [µs]

θ s
l/
π

−10 −5 0 5 10 15

0

0.2

0.4

0.6

0.8

τ [µs]

θ s
l/
π
[r
ad

]

(B)

−500 −400 −300 −200 −100 0
4

5

6

7

8

9

τ [µs]

a
[µ
m
]

−10 −5 0 5 10 15

5

6

7

8

9

τ [µs]

a
[µ
m
]

(C)

−500 −400 −300 −200 −100 0

1.5

2

2.5

3

τ [µs]

b
[µ
m
]

−10 −5 0 5 10 15

1.5

2

2.5

3

τ [µs]

b
[µ
m
]

(D)

−500 −400 −300 −200 −100 0

2

3

4

τ [➭s]

c
[➭
m
]

−10 −5 0 5 10 15

1.5

2

2.5

3

τ [➭s]

c
[➭
m
]

FIGURE 12 Inertia equivalent ellipsoid principal axis and orientation for cases summarized in Fig. 9B. A: Orientation of IEE
axis a with the trajectory as defined in Fig. 11. B: IEE parameter a, that tends to align with the extensional direction. C: IEE
parameter b, perpendicular to a in the symmetrical plane (x⃗,y⃗). D: IEE parameter c that is out of the symmetrical plane lined up
with z⃗.

4.1 Pulses analysis
Considering a centred and a near-wall path, the so-called "edge-effects" are first pointed out. Both rigid beads and RBC were
considered in this study. On the one side, dealing with rigid spheres emphasises the electrical field inhomogeneity effects,
because the shape factor of the particle is obviously constant in this case. On the other side, dealing with RBCs which are highly
deformable highlights impact of the particle dynamics on the electrical perturbation.
The two streamlines investigated contain the geometrical points (0,0,0) and (0,20 �m,0), corresponding to SL1 and SL3 of

Fig. 2, respectively. Using the method of Section 2, the RBC dynamics and the induced electrical perturbation are simulated for
those two streamlines. The RBC parameters are set as in section 3 except for the internal viscosity which is 18×10−6 m2.s−1,
to take into account the room temperature of the experimental acquisition47. When considering a rigid and spherical particle,
there is no need for a preliminary stretching simulation, since no deformation nor rotation are expected. That is why, for the rigid
beads, computations start by depositing the sphere 5�s before the aperture entrance in the reduced configuration. Rigid spheres
were modeled as spherical cells of diameter 5 �m. Beside, Gs and �in were set to 2.5×10−3 N.m−1 and 50 × 10−6 m2.s−1, in order
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FIGURE 13 Impedance pulses obtained from a RBC with the different initial conditions that are summarized in Fig. 9B.
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FIGURE 14 Impedance pulses obtained numerically for rigid beads and RBC considering two different streamlines. The con-
sidered streamlines are SL1 and SL3 illustrated in Fig. 2, that pass by points (0,0,0) and (0,20�m,0), respectively. Graph A
shows the resistance perturbation versus time while graph B depicts the corresponding trajectories. The vertical continuous line
highlights the moment at which occurs the peak, characteristic of a pulse generated by a RBC pursuing a near wall trajectory
(2-RBC).

to ensure that the particle remains spherical during the simulation (variations in diameter were less than 1 %). The remaining
particle parameters were taken as in Section 3.
Experimental acquisitions were performed thanks to a ABXMicros 60 system from HORIBAMedical. A needle withdraws a

few �L from a blood sample tube. The blood is then transferred to the counting tank and diluted by a factor 1/15000 in theMinidil
electrolytic reagent (HORIBA Medical). Finally, the dilution is pumped through the micro-orifice and the signal recording is
started. The counting tank is the same as the one depicted in Fig. 2. The pressure drop imposed to produce the flow through the
aperture and the electrical potential imposed to the electrodes conform to the boundary conditions imposed in the simulations
(section 2.2 and 2.5). The tension pulses are treated and amplified by the ABXMicros 60 system. The electrical signal after the
amplifier is given as an input of an in-house LabVIEW code that registers the electrical perturbations. Two series of acquisitions
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were achieved, one for a latex beads sample (5 �m of diameter) and one for a sample of blood coming from a healthy patient
within 4 hours after extraction.

4.1.1 Numerical Results
The electrical responses obtained numerically are shown in Fig. 14A, while the trajectories followed by the particles are depicted
in Fig. 14B. The rigid bead and RBC cases are denoted by Be and RBC respectively while the centered and off-centered stream-
lines are numbered with 1 and 2. For the centered path, "bell-shaped" pulses with a short duration are obtained for both RBC
and rigid sphere cases (Fig. 14A, cases 1-Be and 1-RBC). However, when considering the case of a trajectory near the aper-
ture edges (2-Be and 2-RBC), the pulse duration increases owing to low velocities. For the sphere case 2-Be, a shorter pulse
is obtained compared to 2-RBC. Looking at trajectories 2-RBC and 2-Be (Fig. 14B), it is observed that the sphere is slightly
deflected towards the aperture axis when entering the aperture, thus decreasing the pulse duration. Note that during simulation
S2, particles trajectories are free to deviate from the streamline. Remind that the latter is only needed to assess the particle ini-
tial state and position for computation S2. However, for the cases considered in this study, deviations between streamlines and
trajectories remain small.
Figure 15 shows the IEE parameters and orientation � (see Fig. 11) for cases 1-RBC and 2-RBC. For the centered path, the

RBC stays aligned with the orifice principal axis (Fig. 15A) and shows a stable shape inside the aperture (Fig. 15B, 15C and
15D for �>0). As it will be discussed in a following section, the RBC shape factor is almost constant in the case of a centered
trajectory, thus explaining the similarity between cases 1-Be and 1-RBC (Fig. 14). In contrast, the RBC following the near-wall
trajectory undergoes a rotation , as the evolution of the � angle shows (Fig. 15A). Moreover, as for the test case of section 3,
the initial prolate ellipsoid shape is compressed as the RBC rotates (Fig. 12). It is interesting to note that the moment at which
a peak occurs in the electrical response corresponds to the moment at which the RBC is perpendicular to the orifice principal
axis (Fig. 14A and Fig. 15A at approximately 7 �s). As illustrated by Golibersuch11, the RBC rotation induces an increasing of
the shape factor and a peak on the electrical perturbation is observable. In their study, Golibersuch used a long aperture (about
420 �m of length) allowing each particle to rotate several times. In industrial Coulter counters, short apertures are generally
employed and the Poiseuille velocity profile is not reached. At the center of the micro-orifice, a flat velocity profile is obtained,
and rotation may occur only for near wall trajectories, where velocity shear is present.
Particles following a near wall trajectory pass through dense electrical field regions when crossing the inlet and outlet sections

of the micro-orifice (Fig 2 C). Those regions explain the typical "M-shaped" pulse obtained for the sphere case 2-Be. Concerning
RBC (2-RBC), the peak comes in addition to the M-shape.
It should be noted that despite the difference between the particles volume (93 �m3 for the RBC and 65 �m3 for the sphere),

the pulses 1-Be and 1-RBC have almost the same amplitude. This is explained by a substantial difference in shape factor between
spheres and an elongated object as RBCs pursuing central trajectories8. Indeed, for the case of spheres, a shape factor of 1.5
was evaluated by many autors5,9, while for an elongated object a shape factor around 1.0 is expected46.

4.1.2 Comparison with experimental data
In this part, numerical results of the previous section are compared with experimental data. More precisely, pulses 1-Be and
2-Be are compared with pulses obtained from a latex bead sample while cases 1-RBC and 2-RBC are compared with electrical
perturbations obtained when analyzing a blood sample. Stating that the pulse duration gives directly an information on the
pursued trajectory, the choice was made to compare the shortest and longest experimental pulses with simulated pulses generated
from the centered and near-wall paths, respectively. The pulse duration are computed as in48.
Converting the measured tension pulses to resistive pulses is not straightforward because of the signal treatements performed

by the Micros 60 hardware system. Therefore, experimental and numerical data are scaled in amplitude before comparisons.
For a given experimental acquisition, the pulses are scaled with the mean of the "bell-shaped" pulses maximum. Those latter
are extracted from the entire acquisition by the use of a convenient pulse duration threshold. Numerical pulses generated from
the rigid sphere and the RBC are scaled with the maximum of pulses 1-Be and 1-RBC, respectively (Fig. 14).
Once the data scaled, the numerical pulses durations are computed and used for extracting from the experimental acquisition

signatures having the same duration, with a tolerance margin of 1 �s. Figure 16 displays the numerical results superimposed
with experimental pulses having the same length. The predicted numerical results are retrieved in the experiment. For both latex
bead and RBC cases (Fig. 16A and 16C), the shortest experimental pulses display a bell-shape. The typical M-shaped pulses are
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FIGURE 15 RBC IEE orientation and parameters for cases 1-RBC and 2-RBC of Fig 14.

observed by extracting the longest pulses induced by spherical particles (Fig. 16B) . The peak characteristic of the RBC rotation
is also observable experimentally for the case of the longest pulses generated by RBCs (Fig. 16D).

4.2 Theoretical modeling of the electrical perturbations
By comparing the experiment with the simulation results, a part of the experimental pulses was explained in terms of the particle
rotation and electrical field inhomogeneities . Hereafter, the shape factor variations are modeled. The aim of this modeling effort
is to provide a finer analysis of the pulses signatures and uncorrelate the dynamical effects from the electrical ones.
In the case of rigid spheres, the shape factor fs is constant, so that, a linear relation between the squared electrical field

and the electrical perturbation ΔR is expected, see Eq. 2. From an electrostatic simulation performed without particles, the
electrical field E is interpolated along the trajectories of Fig. 14. Figure 17 shows the scaled squared electrical field along the
particle trajectory and the scaled pulses according axis x⃗ for cases 1-Be and 2-Be. A good agreement of E2 with the electrical
perturbation is found. This result fully supports Kachel’s statement8 that, under the assumption of a constant shape factor, ΔR
is directly proportional to E2.
When considering deformable particles such as RBC, deformations and rotation may cause shape factor variations, in partic-

ular for near wall trajectories. In such a way, there is no linearity between E2 and ΔR (Eq. 2). In the following, the RBC shape
factor is modeled using IEE orientation and parameters. Provided one of the ellipsoid principal axis is aligned with the electri-
cal field E⃗, Velick and Gorin9 states that, in the case of a non-conducting ellipsoid immersed in a homogeneous electrical field,
the shape factor may be written as:

fs =
2

2 − a.b.c.L�
(10)
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FIGURE 16 Numerical pulses of Fig. 14 superimposed with relevant experimental data. Graphs A and B compare cases 1-Be
and 2-Be with shortest and longest experimental pulses obtained from a latex bead sample, respectively. In a same way, graphs C
and D compare 1-RBC and 2-RBC with the shortest and longest pulses obtained form a blood sample. Experimental pulses are
measured as tension changes, ΔU while numerical pulses are computed as a resistance variation ΔR, that is why the amplitudes
are scaled with the "bell shaped" pulses maximum.
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FIGURE 17 Comparison between the resistive perturbation obtained from a rigid bead and the squared electrical field along the
particle trajectory. A and B are relative to cases 1-Be and 2-Be respectively. In the shown graphs, each quantity �(X) is scaled
as : �∗(X) = �(X)∕�(X = 0), with � ∈ [ΔR,E2].
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FIGURE 18Modeling of the pulse signatures for the case of a deformable particle such as RBC. On those graphs, the pulse, the
squared electrical field, the shape factor and the product of the squared electrical field with the shape factor are shown. A and B
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where a, b and c denote the ellipsoid parameters and L� is an elliptical integral that depends on the ellipsoid axis that is lined
up with E⃗. As an example, if axis a is aligned with the electrical field, one has:

L� = La =

∞

∫
0

d�
(a2 + �)3∕2(b2 + �)1∕2(c2 + �)1∕2

(11)

For the computation of Lb and Lc , the ellipsoid parameters a, b and c are simply interchanged in Eq. 11. In order to take into
account the RBC orientation inside the aperture, Eq. 10 is combined with the following relation10:

fs = f∕∕ − cos2[�(f∕∕ − f⟂)] (12)
where � is the orientation of the IEE a-axis with respect to the electrical field, while the terms f∕∕ and f⟂ denote the shape
factor of the particle when the a-axis is aligned and perpendicular to the electrical field. Those latter are computed with the use
of Eq.10 using respectively La and Lb.
From the RBC IEE parameters reported in Fig. 15, the shape factor evolution inside the aperture is computed for Cases 1-

RBC and 2-RBC by the use of Eq. 12. Figure 18 shows the scaled shape factor, the scaled electrical field squared, the scaled
pulse and the scaled product of the shape factor with the electrical field squared. For the case of a centered path (Fig. 18A), the
shape factor is constant within the micro-orifice as it was suggested observing the constant IEE parameters and orientation in
Fig. 15. In agreement with Eq. 2, the scaled electrical perturbation is then superimposed with the squared electrical field. For
a near wall trajectory, the RBC rotation and deformation make the shape factor vary during the particle evolution inside the
orifice. The squared electrical field is no more sufficient to explain the pulse signature, however, as provided by equation 2, the
product of fs with E2, shows a good comparison with the electrical perturbation. A loss of accuracy is nevertheless observed
when approaching the aperture limits (x=± 37.5�m). On the orifice limits, the electrical field E⃗ is not aligned with axis x⃗, thus
the IEE orientation � does not measure the expected angle for equation 12, thus explaining the differences. A correction would
need to be implemented to make the model relevant outside the orifice.

5 CONCLUSION

Coulter counters generally used in the industry involve a tank separated in two parts by a micro-orifice. The detection zone that
is almost restricted to the micro-orifice is included in a bigger area where particles undergo deformations. The time required
for a particle to cross the aperture is smaller by several orders of magnitude than the time spent by the particle in the whole
deformation area. For this reason, simulating the particle behavior in the entire deformation area is not practicable because of
the required computational cost.
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A numerical pipeline allowing the simulation of deformable particles in a Coulter counter is proposed. Upstream of the
aperture, a purely axisymmetric flow is evidenced in the geometry of interest, so that the simulation of the particle deformation
that occurs upstream of the aperture is well predicted thanks to an extensional configuration that requires a small computationnal
domain only. The particle dynamics inside the orifice is then solved taking the elongated particle as initial state. Finally, the
resistive perturbation induced by the particle evolution inside the aperture is obtained from a series of electrostatic simulations
assuming that the particle is perfectly isolating.
As illustration cases, RBC and rigid spheres were considered. However, the method can be extended to other types of

deformable or rigid particles. The numerical pulses generated for rigid spheres and deformable RBCs show very good quali-
tative comparisons with experimental data . Dealing with centered and off-centered trajectories, the electrical and dynamical
edge-effects are pointed out. Regions with a dense electrical field near the aperture walls lead to "M-shapped" pulses for spher-
ical particles. RBCs crossing the orifice along the walls rotate and induce a peak on the electrical perturbation that comes in
addition to the electrical effect.
Using the inertia equivalent ellipsoid and shape factor analytical models provided in the literature, the evolution of the shape

factor during the particle evolution inside the aperture is provided. As stipulated by the empirical Eq. 2, linearity between the
electrical perturbation and the product of the shape factor with the squared electrical field is retrieved. Considering rigid spheres,
for which the shape factor remains constant, the squared electrical field is directly proportional to the resistance variation. The
use of the numerical simulation with the shape factor modeling allows a better understanding on the electrical and dynamical
respective contributions on the edge-effects. The analysis presented also provides a useful tool to assess the particle deformability
impact on the electrical perturbation.
The presented works and results were dedicated to the Micros 60 (HORIBA Medical) operating system. The propounded

pipeline remains applicable for other configurations, provided the assumption of an axisymmetric extensional flow in the
upstream part of the aperture can be made. It should be noted that the required elongation time should be established before
applying the propounded pipeline for other configurations. Finally, note that in the range of the electrical field observed in the
studied configuration (in the order of 1.0×106 V.m−1), RBC electro-deformations were reported49 50, so that greater deforma-
tion should be expected if dielectrophoretic (DEP) forces were taken into account. The membrane viscosity was not accounted
for neither, despite the short loading times (about a few 10 �m) experienced by the RBC in this kind of configuration. Further
investigations about the impact of these effects are intended to in the future. Still, good comparison with experimental data was
obtained, demonstrated that the proposed pipeline and current assumptions are appropriate to represent the main mechanisms
at play.
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