Catherine Lacour-Koobus
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
UMR CNRS 5149 – Equipe ACSIOM
Université Montpellier II
Place Eugène Bataillon
F-34095 Montpellier cedex 05
FRANCE
lacour@math.univ-montp2.fr
Tel : +33 4 67 14 42 04
Fax: +33 4 67 14 93 16


Département de Mathématiques

ACSIOM

Home Recherche Enseignement 
   
Seminaire Acsiom

Page du seminaire

 

 




:: Decomposition de domaines - elements avec joints
Livre en cours d'ecriture, disponible fin 2009:
Faker Ben Belgacem (Auteur), Catherine Lacour (Auteur) The Mortar Finite Element Method: Basics, Theory and Implementation Editeur : Chapman & Hall/CRC, ISBN-13: 978-1584889809.

Lacour, Catherine On the mortar triangular Discrete Kirchoff Finite Elements for Elastic Plates. Mesh partioning Techniques and Domain Decomposition Methods, 321--347, Saxe-Coburg Publications, F. Magoul\`es Editor, Stirlingshire, Scotland, 2007.

Lacour, Catherine Non conforming domain decomposition method: the mortar element method. Domain decomposition methods: theory and applications 95--122, GAKUTO Internat. Ser. Math. Sci. Appl., 25, Gakk\=otosho, Tokyo, 2006.

C.Lacour, Y.Maday La methode des elements avec joint appliquee aux methodes d'approximation D.K.T. C. R. Acad. Sci. Paris, t. 326, S\'erie I,p.1237-1242, 1998.

C.Farhat, C.Lacour, D.Rixen Incorporation of linear multipoint constraints in substructure based iterative solvers - PART I: A numerically scalable algorithm International Journal for Numerical Methods in Engineering, Vol.43, pp. 997-1016, 1998.

C.Lacour Non-conforming domain decomposition method for plate and shell problems DD10 Proceedings, Contemporary Mathematics 218 (1998) 304-310.

L.Cazabeau, C.Lacour, Y.Maday Numerical quadratures and Mortar methodsComputational methods of 21th century, 1997

C.Lacour, Y.Maday Two approaches for a non-conforming domain decomposition method: FETI method and the Mortar method BIT, vol 37, $\#$ 3, October 1996.

C.Lacour Iterative Substructuring preconditioners for the Mortar Element Method DD9 Proceedings, John Wiley $\&$ Sons Ltd, 1996.

 
:: Analyse variationnelle

  Paru dans ESAIM: COCV
Received January 7, 2008. Published online July 19, 2008.

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources
Gisella Croce, Catherine Lacour and Gerard Michaille
Abstract
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order ${1\over \sqrt \varepsilon}$ concentrated on an $\varepsilon$-neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
Mathematics Subject Classification.Mathematics Subject Classification. 49Q20, 28A33
Key words: Gradient Young measures, concentration measures, minimization problems, quasiconvexity


 
:: ANR

 
Sujet: Decomposition de domaines et calculs multi-echelles de singularites dans les structures mecaniques
On se propose de developper et de comparer la methode de decomposition de domaines avec les methodes asymptotiques sur deux types de structures:
:: les structures elastiques assemblees
:: les structures developpant des defauts au voisinage de points singuliers.

Partenaires: IJLRA, LAGA, I3M, projet MACS Inria

   

Home Recherche Enseignement