Séminaire Gaston Darboux
vendredi 20 avril 2007 à 11:15 - salle 431
Pierre Will (Institut Fourier)
Groupes de tore épointé dans PU(2,1)
Les variétés de représentations de groupes fondamentaux de surfaces dans PU(n,1), le groupe des isométries holomorphes de l'espace hyperbolique complexe de dimension n , sont des objets encore peu explorés. En particulier, il est difficile de déterminer quand une représentation est discrète et/ou injective. Aucun espace de modules de telles représentations n'a été complètement décrit à ce jour. Après un rapide panorama des résultats connus, je m'intéresserai au cas du tore épointé et des groupes à deux générateurs.