Soutenances de thèses
lundi 19 décembre 2016 à 10:00 - salle de conf. bat. 9
Tito Manrique (SupAgro - INRA)
Modèles statistiques de régression linéaire fonctionnelle. Application sur des données fonctionnelles issues du phénotypage végétal haut débit.
Jury composé de : Nadine HILGERT, INRA Montpellier, Directeur de thèse Christophe CRAMBES, Université de Montpellier, co-encadrant de thèse Claire LACOUR, Université Paris-Sud Orsay, Examinateur Andre MAS, Université de Montpellier, Examinateur Alois KNEIP, University of Bonn, Rapporteur Yves ROZENHOLC, Université Paris Descartes, Rapporteur Résumé : L'Analyse des Données Fonctionnelles (ADF) est une branche de la statistique qui est de plus en plus utilisée dans de nombreux domaines scientifiques appliqués tels que l'expérimentation biologique, la finance, la physique, etc. Une raison à cela est l'utilisation des nouvelles technologies de collecte de données qui augmentent le nombre d'observations dans un intervalle de temps. Les jeux de données fonctionnelles sont des échantillons de réalisations de fonctions aléatoires qui sont des fonctions mesurables définies sur un espace de probabilité à valeurs dans un espace fonctionnel de dimension infinie. Parmi les nombreuses questions étudiées par l'ADF, la régression linéaire fonctionnelle est l'une des plus étudiées, aussi bien dans les applications que dans le développement méthodologique. L'objectif de cette thèse est l'étude de modèles de régression linéaire fonctionnels lorsque la covariable X et la réponse Y sont des fonctions aléatoires et les deux dépendent du temps. En particulier, nous abordons la question de l'influence de l'histoire d'une fonction aléatoire X sur la valeur actuelle d'une autre fonction aléatoire Y à un instant donné t. Pour ce faire, nous sommes surtout intéressés par trois modèles: le modèle fonctionnel de concurrence (Functional Concurrent Model: FCCM), le modèle fonctionnel de convolution (Functional Convolution Model: FCVM) et le modèle linéaire fonctionnel historique. En particulier pour le FCVM et FCCM nous avons proposé des estimateurs qui sont consistants, robustes et plus rapides à calculer par rapport à d'autres estimateurs déjà proposés dans la littérature. Notre méthode d'estimation dans le FCCM étend la méthode de régression Ridge développée dans le cas linéaire classique au cadre de données fonctionnelles. Nous avons montré la convergence en probabilité de cet estimateur, obtenu une vitesse de convergence et développé une méthode de choix optimal du paramètre de régularisation. Le FCVM permet d'étudier l'influence de l'histoire de X sur Y d'une manière simple par la convolution. Dans ce cas, nous utilisons la transformée de Fourier continue pour définir un estimateur du coefficient fonctionnel. Cet opérateur transforme le modèle de convolution en un FCCM associé dans le domaine des fréquences. La consistance et la vitesse de convergence de l'estimateur sont obtenues à partir du FCCM. Le FCVM peut être généralisé au modèle linéaire fonctionnel historique, qui est lui-même un cas particulier du modèle linéaire entièrement fonctionnel. Grâce à cela, nous avons utilisé l'estimateur de Karhunen-Loève du noyau historique. La question connexe de l'estimation de l'opérateur de covariance du bruit dans le modèle linéaire entièrement fonctionnel est également traitée. Finalement nous utilisons tous les modèles mentionnés ci-dessus pour étudier l'interaction entre le déficit de pression de vapeur (Vapour Pressure Deficit: VPD) et vitesse d'élongation foliaire (Leaf Elongation Rate: LER) courbes. Ce type de données est obtenu avec phénotypage végétal haut débit. L'étude est bien adaptée aux méthodes de l'ADF.