Séminaire ACSIOM
mardi 23 mai 2017 à 10:00 - salle 109 (1er étage)
Frédéric Lagoutière (Institut Camille Jordan, Lyon)
Équations d'agrégation avec potentiel peu régulier : analyse et approximation
Je présenterai quelques résultats que j'ai obtenus récemment en collaboration avec José Antonio Carrillo, François Delarue, François James et Nicolas Vauchelet. Ils concernent des équations d'agrégation, qui sont des équations de transport, conservatives, où le champ de transport est obtenu par convolution de la solution elle-même (l'équation étant donc non linéaire) par le gradient d'un potentiel qui peut n'être pas régulier. Nous verrons que les problèmes de Cauchy associés à ce type d'équations sont bien posés, en un sens proposé par Poupaud et Rascle, en se basant sur la théorie des EDO de Filippov. Nous verrons ensuite que ces solutions, non régulières (mesures bornées), s'approchent bien (à l'ordre 1/2 en le pas du maillage) par des schémas diffusifs (du genre décentré amont), en distance de Wasserstein.