Soutenances de thèses
mercredi 28 juin 2017 à 14:00 - bât. 9
Samuel Bach (I3M)
Formes quadratiques décalées et déformations
Damien CALAQUE, Université de Montpellier, Directeur de these
M. Carlos SIMPSON, Université Sophia Antipolis, Rapporteur
M. Nikita MARKARYAN, National Research University Higher School of Economics,Rapporteur
M. Bertrand TOËN, Université de Toulouse CoDirecteur de these
M. Grégory GINOT, Université Pierre et Marie Curie , Examinateur
M. Andrew RANICKI, University of Edinburgh Examinateur
M. Gabriele VEZZOSI, Universita di Firenze Examinateur
Résumé : Résumé :
La L-théorie classique d'un anneau commutatif est construite à partir des formes quadratiques sur cet anneau modulo une relation d'équivalence lagrangienne. Nous construisons la L-théorie dérivée, à partir des formes quadratiques $n$-décalées sur un anneau commutatif dérivé. Nous montrons que les formes $n$-décalées qui admettent un lagrangien possèdent une forme standard. Nous montrons des résultats de chirurgie pour la L-théorie dérivée, qui permettent de réduire une forme quadratique décalée en une forme plus simple équivalente. On compare la L-théorie dérivée avec la L-théorie classique. On définit un champ dérivé des formes quadratiques dérivées, et un champ dérivé des lagrangiens dans une forme, qui sont localement algébriques de présentation finie. On calcule les complexes tangents, et on trouve des points lisses. On montre un résultat de rigidité pour la L-théorie : la L-théorie d'un anneau commutatif est isomorphe à celle d'un voisinage hensélien de cet anneau. Enfin, on définit l'algèbre de Clifford d'une forme quadratique n-décalée, qui est une déformation d'une algèbre symétrique en tant qu'E_k-algèbre. On montre un affaiblissement de la propriété d'Azumaya pour ces algèbres, dans le cas d'un décalage nul n=0, qu'on appelle semi-Azumaya. Cette propriété exprime la trivialité de l'homologie de Hochschild du bimodule de Serre.
La L-théorie classique d'un anneau commutatif est construite à partir des formes quadratiques sur cet anneau modulo une relation d'équivalence lagrangienne. Nous construisons la L-théorie dérivée, à partir des formes quadratiques $n$-décalées sur un anneau commutatif dérivé. Nous montrons que les formes $n$-décalées qui admettent un lagrangien possèdent une forme standard. Nous montrons des résultats de chirurgie pour la L-théorie dérivée, qui permettent de réduire une forme quadratique décalée en une forme plus simple équivalente. On compare la L-théorie dérivée avec la L-théorie classique. On définit un champ dérivé des formes quadratiques dérivées, et un champ dérivé des lagrangiens dans une forme, qui sont localement algébriques de présentation finie. On calcule les complexes tangents, et on trouve des points lisses. On montre un résultat de rigidité pour la L-théorie : la L-théorie d'un anneau commutatif est isomorphe à celle d'un voisinage hensélien de cet anneau. Enfin, on définit l'algèbre de Clifford d'une forme quadratique n-décalée, qui est une déformation d'une algèbre symétrique en tant qu'E_k-algèbre. On montre un affaiblissement de la propriété d'Azumaya pour ces algèbres, dans le cas d'un décalage nul n=0, qu'on appelle semi-Azumaya. Cette propriété exprime la trivialité de l'homologie de Hochschild du bimodule de Serre.