Séminaire des Doctorant·e·s
lundi 17 juin 2019 à 10h30 - Salle 109
Maud Joubaud ()
Répétition de soutenance : processus de Markov déterministes par morceaux branchants et problème d'arrêt optimal, application à la division cellulaire
Les processus markoviens déterministes par morceaux (PDMP) forment une vaste classe de processus stochastiques caractérisés par une évolution déterministe entre des sauts à mécanisme aléatoire. Ce sont des processus de type hybride, avec une composante discrète de mode et une composante d'état qui évolue dans un espace continu. Entre les sauts du processus, la composante continue évolue de façon déterministe, puis au moment du saut un noyau markovien sélectionne la nouvelle valeur des composantes discrète et continue. Dans cette thèse, nous construisons des PDMP évoluant dans des espaces de mesures (de dimension infinie), pour modéliser des population de cellules en tenant compte des caractéristiques individuelles de chaque cellule. Nous exposons notre construction des PDMP sur des espaces de mesure, et nous établissons leur caractère markovien. Sur ces processus à valeur mesure, nous étudions un problème d'arrêt optimal. Un problème d'arrêt optimal revient à choisir le meilleur temps d'arrêt pour optimiser l'espérance d'une certaine fonctionnelle de notre processus, ce qu'on appelle fonction valeur. On montre que cette fonction valeur est solution des équations de programmation dynamique et on construit une famille de temps d'arrêt epsilon-optimaux. Dans un second temps, nous nous intéressons à un PDMP en dimension finie, le TCP, pour lequel on construit un schéma d'Euler afin de l'approcher. Ce choix de modèle simple permet d'estimer différents types d'erreurs. Nous présentons des simulations numériques illustrant les résultats obtenus.