Publications



3422 documents

  • Marien-Lorenzo Hanot. An arbitrary-order fully discrete Stokes complex on general polyhedral meshes. Mathematics of Computation, 2023, 92 (343), pp.1977-2023. ⟨10.1090/mcom/3837⟩. ⟨hal-03665576⟩
  • Ghislain Durif, Cathy Liautard-Haag, Marie-Claire Vincent. Bayesian inference of parental allele inheritance in fetus for noninvasive prenatal diagnosis. StatLearn 2023, Apr 2023, Montpellier, France. , https://statlearn.sciencesconf.org/459803. ⟨hal-04059861⟩
  • Michel Kamel, Anis Hoayek, Mireille Batton-Hubert. Anomaly Detection Based on System Log Data. ICLDQAD 2023 : International Conference on Linked Data Quality and Anomaly Detection, Apr 2023, Athenes, Greece. ⟨emse-04059771⟩
  • José Galaz, Maria Kazolea, Antoine Rousseau. Modeling wave breaking by coupling dispersive and hyperbolic water wave models. MOMI 2023 - Le Monde des Mathématiques Industrielles 2023: Smart Environment, Apr 2023, Sophia Antipolis, France. 2023. ⟨hal-04189458⟩
  • Katia Ait-Ameur, Arthur Loison, Teddy Pichard, Marc Massot. Simulation of polydisperse oscillating droplets through high order numerical methods for geometric moment equations. The 11th International Conference on Multiphase Flow - ICMF 2023, Apr 2023, Kobe, Japan. ⟨hal-04934500⟩
  • Daniel Castanon Quiroz, Daniele Di Pietro. A pressure-robust HHO method for the solution of the incompressible Navier-Stokes equations on general meshes. IMA Journal of Numerical Analysis, 2023, 44 (1), pp.397-434. ⟨10.1093/imanum/drad007⟩. ⟨hal-03608248v2⟩
  • David Kern. Monoidal envelopes and Grothendieck construction for dendroidal Segal objects. 2023. ⟨hal-04054221⟩
  • David Kern. A categorification of the quantum Lefschetz principle. 2023. ⟨hal-02476725v2⟩
  • Nathan Lombard. Phénomènes transpositifs à l’interface entre mathématiques et physique : le cas des structures mathématiques en mécanique quantique. Histoire et perspectives sur les mathématiques [math.HO]. Université de Montpellier, 2023. Français. ⟨NNT : 2023UMONS015⟩. ⟨tel-04912382⟩
  • Nathan Lombard. Phénomènes transpositifs à l’interface entre mathématiques et physique : le cas des structures mathématiques en mécanique quantique. Physique mathématique [math-ph]. Université de Montpellier, 2023. Français. ⟨NNT : 2023UMONS015⟩. ⟨tel-04231435⟩