Séminaire Algèbre Géométrie Algébrique Topologie Algébrique
jeudi 20 septembre 2018 à 11:30 - salle 430
Olivier Benoist (CNRS, École normale supérieure)
Densité des sommes de trois carrés
Hilbert a démontré qu'un polynôme réel en deux variables qui prend des valeurs positives est somme de quatre carrés de fractions rationnelles. Cassels, Ellison et Pfister ont montré que ce résultat est optimal : il existe de tels polynômes qui ne sont pas sommes de trois carrés de fractions rationnelles. Dans cet exposé, nous expliquerons pourquoi les polynômes qui peuvent s'écrire comme sommes de trois carrés sont denses dans l'ensemble de ceux qui sont positifs.