Séminaire de Probabilités et Statistique
lundi 05 décembre 2022 à 13:45 - SupAgro - Bât 9 - Salle 301
Madeleine Kubasch (INRAE Maiage et CMAP)
Réduction de modèles épidémiques à plusieurs niveaux de mélange (Séminaire SupAgro)
Les modèles à plusieurs niveaux de mélange permettent de prendre en compte à la fois une échelle globale de contacts et la présence de petites structures fermées comme les foyers, aboutissant à un réseau de contacts plus réaliste que celui de l’uniforme mélange. En revanche, ces modèles sont complexes, et même les simulations numériques peuvent devenir lourdes en temps de calcul pour de grandes populations. Cela incite donc à proposer des modèles réduits, qui se positionnent au bon niveau de complexité pour être sensible à l’impact de cette structure des contacts sur l’épidémie, tout en étant plus propices à l’analyse mathématique et à l’exploration numérique. Plus précisément, nous nous intéressons ici à un modèle à trois niveaux de mélange, où chaque individu est membre permanent d’un foyer et d’un lieu de travail, en plus de faire partie de la population générale uniformément mélangeante. Nous montrons qu’un modèle SIR uniformément mélangeant calibré de sorte à avoir le même taux de croissance que le modèle à trois niveaux de mélange fournit une approximation satisfaisante. Ce travail incite d’une part à étudier de plus près le début de l’épidémie, étant donné que le taux de croissance exponentiel semble particulièrement sensible à l’impact des structures de contact sur l’épidémie. D’autre part, il pose la question des réductions vers des modèles déterministes, et nous cherchons également à montrer la convergence du modèle stochastique vers un système dynamique inspiré des « edge-based compartmental models » introduits par Erik Volz.