Séminaire Algèbre Géométrie Algébrique Topologie Algébrique
jeudi 19 décembre 2002 à - salle 431
Lidia Angeleri Huegel (Université Autonome de Barcelone)
Tilting theory and the finitistic dimension conjectures
For a finite-dimensional algebra $\Lambda$ the little finitistic dimension findim$\Lambda$ is defined as the supremum of the projective dimensions attained on the category ${\cal P}^{{<\infty}}$ of all finitely generated $\Lambda$-modules of finite projective dimension, while the big finitistic dimension Findim$\Lambda$ is defined correspondingly on the category of all $\Lambda$-modules of finite projective dimension. The Finitistic Dimension Conjectures ask when these dimensions coincide (this is known to fail in general), and moreover, whether the little finitistic dimension is always finite. I will discuss a new approach to these conjectures using infinite dimensional tilting modules. Hereby I will present joint work with Jan Trlifaj.