Séminaire Algèbre Géométrie Algébrique Topologie Algébrique
jeudi 23 novembre 2006 à 11:15 - salle 431
Sébastien Jansou (Université de Montpellier 2)
Exemples de schémas de Hilbert invariants
Si G est un groupe réductif connexe complexe et V un G-module rationnel de dimension finie, V. Alexeev et M. Brion ont construit le schéma de Hilbert invariant, qui paramètre les sous-schémas de V fermés, G-stables dont l'algèbre des fonctions donne une représentation de G à multiplicités finies fixées. On décrira ce schéma dans le cas le plus simple, qui paramètre les déformations invariantes du cône des vecteurs de plus haut poids dans un G-module simple. La classification que l'on obtiendra est liée à celles (déjà connues) des algèbres de Jordan simples complexes d'une part, et des paires de variétés de drapeaux dont l'une est un diviseur ample de l'autre.