Daniele A. Di Pietro

Personal information

Full name Daniele Antonio Di Pietro
Roles
  • Full professor of Numerical Analysis
  • Director of Institut Montpelliérain Alexander Grothendieck
  • Affiliation Université de Montpellier
    Curriculum vitæ CV (PDF format)
    Postal address Université de Montpellier
    Institut Montpelliérain Alexander Grothendieck
    Case courrier 051
    place Eugène Bataillon
    34090 Montpellier, France
    E-mail daniele.di-pietro AT umontpellier.fr

    Research

    Research unit Institut Montpelliérain Alexander Grothendieck (UMR 5149)
    Research interests
  • Advanced numerical methods for PDEs
  • A priori and a posteriori error analysis
  • Fluid and solid mechanics
  • Porous media flows
  • Modern implementation techniques
  • Editorial activity
  • Associate Editor of Numerical Algorithms (Springer)
  • Associate Editor of Frontiers in Applied Mathematics and Statistics
  • Research databases
  • MathSciNet (790640) (requires subscription)
  • Scopus (6603444428)
  • Google Scholar
  • ORCID (0000-0003-0959-8830)
  • Highlights
  • POEMS 2022 at Politecnico di Milano
  • NEMESIS workshop
  • HArDCore, an HHO-oriented C++ library
  • Groupe de travail NAGANA
  • POEMS 2019 at CIRM
  • ANR fast4hho
  • ANR HHOMM
  • IHP Thematic Quarter Numerical Methods for PDEs
  • Publications

    All in one BibTeX file

    Research monographs (2)

    book   1) D. A. Di Pietro and J. Droniou
    The Hybrid High-Order Method for Polytopal Meshes
    Design, Analysis, and Applications
    Number 19 in Modeling, Simulation and Applications
    Springer International Publishing, 2020
    ISBN 978-3-030-37202-6 (Hardcover) 978-3-030-37203-3 (eBook)
    DOI: 10.1007/978-3-030-37203-3
    HAL preprint hal-02151813


    book   2) D. A. Di Pietro and A. Ern
    Mathematical Aspects of Discontinuous Galerkin Methods
    Number 69 in Mathematics & Applications
    Springer-Verlag, Berlin, 2012
    ISBN 978-3-642-22979-4 (Softcover) 978-3-642-22980-0 (eBook)
    DOI: 10.1007/978-3-642-22980-0
    HAL preprint hal-01820185

    Edited monographs (2)

    book   1) D. A. Di Pietro, L. Formaggia, and R. Masson (Eds.)
    Polyhedral Methods in Geosciences
    SEMA-SIMAI
    Springer International Publishing, 2021
    ISBN: 978-3-030-69362-6
    DOI: 10.1007/978-3-030-69363-3



    book   2) D. A. Di Pietro, A. Ern, and L. Formaggia (Eds.)
    Numerical Methods for PDEs: State of the Art Techniques
    Number 15 in SEMA-SIMAI
    Springer International Publishing, 2018
    ISBN 978-3-319-94675-7 (Hardcover) 978-3-319-94676-4 (eBook)
    DOI: 10.1007/978-3-319-94676-4
    HAL preprint hal-01818426

    Papers (84)

    1) D. A. Di Pietro
    An arbitrary-order discrete rot-rot complex on polygonal meshes with application to a quad-rot problem
    IMA J. Numer. Anal., 2023. Accepted for publication
    HAL preprint hal-03830503, arXiv preprint 2210.15581 [math.NA]

    2) D. A. Di Pietro, J. Droniou, and S. Pitassi
    Cohomology of the discrete de Rham complex on domains of general topology
    Calcolo, 2023, 60(32). DOI: 10.1007/s10092-023-00523-7
    HAL preprint hal-03767946, arXiv preprint 2209.00957 [math.NA]

    3) D. A. Di Pietro and J. Droniou
    A polytopal method for the Brinkman problem robust in all regimes
    Comput. Meth. Appl. Mech. Engrg., 2023, 409(115981). DOI: 10.1016/j.cma.2023.115981
    HAL preprint hal-03930849, arXiv preprint 2301.03272 [math.NA]

    4) D. A. Di Pietro and J. Droniou
    An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency
    Found. Comput. Math., 2023, 23:85–164. DOI: 10.1007/s10208-021-09542-8
    arXiv preprint 2101.04940 [math.NA]

    5) D. Castañón Quiroz and D. A. Di Pietro
    A pressure-robust HHO method for the solution of the incompressible Navier–Stokes equations on general meshes
    IMA J. Numer. Anal., 2023. Published online. DOI: 10.1093/imanum/drad007
    HAL preprint hal-03608248, arXiv preprint 2203.07180 [math.NA]

    6) D. A. Di Pietro and J. Droniou
    Homological- and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method
    ESAIM: Math. Model Numer. Anal., 2023, 57(1):191–225. DOI: 10.1051/m2an/2022067
    HAL preprint hal-03598859, arXiv preprint 2203.02939 [math.NA]

    7) D. A. Di Pietro, P. Matalon, P. Mycek, and U. Rüde
    High-order multigrid strategies for HHO discretizations of elliptic equations
    Numer. Linear Algebra with Appl., 2023, 30(e2456). DOI: 10.1002/nla.2456
    HAL preprint hal-03531293

    8) M. Botti, D. A. Di Pietro, and M. Salah
    A serendipity fully discrete div-div complex on polygonal meshes
    Comptes Rendus Mécanique, 2023, 351(S1). DOI: 10.5802/crmeca.150
    HAL preprint hal-03723495, arXiv preprint 2207.07194 [math.NA]

    9) D. A. Di Pietro and J. Droniou
    A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem
    Math. Comp., 2023, 92(339):51–77. DOI: 10.1090/mcom/3765
    HAL preprint hal-03504496, arXiv preprint 2112.14497 [math.NA]

    10) D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz
    Algebraic multigrid preconditioner for statically condensed systems arising from lowest-order hybrid discretizations
    SIAM J. Sci. Comput., 2022. Published online. DOI: 10.1137/21M1429849. URL: https://hal.archives-ouvertes.fr/hal-03272468
    HAL preprint hal-03272468

    11) D. A. Di Pietro and J. Droniou
    A discrete de Rham method for the Reissner–Mindlin plate bending problem on polygonal meshes
    Comput. Math. Appl., 2022, 125:136–149. DOI: 10.1016/j.camwa.2022.08.041
    HAL preprint hal-03234088, arXiv preprint 2105.11773 [math.NA]

    12) L. Beirão da Veiga, F. Dassi, D. A. Di Pietro, and J. Droniou
    Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes
    Comput. Meth. Appl. Mech. Engrg., 2022, 397(115061). DOI: 10.1016/j.cma.2022.115061. URL: https://authors.elsevier.com/a/1fChmAQEIzVqH
    HAL preprint hal-03491878, arXiv preprint 2112.0970

    13) D. A. Di Pietro, I. Fontana, and K. Kazymyrenko
    A posteriori error estimates via equilibrated stress reconstructions for contact problems approximated by Nitsche's method
    Comput. Math. Appl., 2022, 111:61–80. DOI: 10.1016/j.camwa.2022.02.008. URL: https://authors.elsevier.com/c/1egEh3CDPQ2-a5
    HAL preprint hal-03354078, arXiv preprint 2109.11944 [math.NA]

    14) F. Chave, D. A. Di Pietro, and S. Lemaire
    A discrete Weber inequality on three-dimensional hybrid spaces with application to the HHO approximation of magnetostatics
    Math. Models Methods Appl. Sci., 2022, 32(1):175–207. DOI: 10.1142/S0218202522500051
    HAL preprint hal-02892526, arXiv preprint 2007.03485 [math.NA]

    15) L. Botti and D. A. Di Pietro
    $p$-Multilevel preconditioners for HHO discretizations of the Stokes equations with static condensation
    Commun. Appl. Math. Comput., 2022, 4(3):783–822. DOI: 10.1007/s42967-021-00142-5
    HAL preprint hal-02951823, arXiv preprint 2009.13840

    16) L. Botti, M. Botti, and D. A. Di Pietro
    An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods
    Comput. Math. Appl., 2021, 91(1):150–175. DOI: 10.1016/j.camwa.2020.06.004
    HAL preprint hal-02398946, arXiv preprint 1912.03665 [math.NA]

    17) M. Botti, D. Castañón Quiroz, D. A. Di Pietro, and A. Harnist
    A Hybrid High-Order method for creeping flows of non-Newtonian fluids
    ESAIM: Math. Model Numer. Anal., 2021, 55(5):2045–2073. DOI: 10.1051/m2an/2021051
    HAL preprint hal-02519233, arXiv preprint 2003.13467 [math.NA]

    18) D. Castañón Quiroz, D. A. Di Pietro, and A. Harnist
    A Hybrid High-Order method for incompressible flows of non-Newtonian fluids with power-like convective behaviour
    IMA J. Numer. Anal., 2021. Published online. DOI: 10.1093/imanum/drab087
    HAL preprint hal-03273118, arXiv preprint 2106.14950 [math.NA]

    19) D. A. Di Pietro, J. Droniou, and A. Harnist
    Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems
    Calcolo, 2021, 58(19). DOI: 10.1007/s10092-021-00410-z
    HAL preprint hal-03049154, arXiv preprint 2012.05122 [math.NA]

    20) D. A. Di Pietro and J. Droniou
    An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence
    J. Comput. Phys., 2021, 429(109991). DOI: 10.1016/j.jcp.2020.109991
    HAL preprint hal-02573274, arXiv preprint 2005.06890 [math.NA]

    21) D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz
    Towards robust, fast solutions of elliptic equations on complex domains through HHO discretizations and non-nested multigrid methods
    Internat. J. Numer. Methods Engrg., 2021, 122(22):6576–6595. DOI: 10.1002/nme.6803
    HAL preprint hal-03163476

    22) D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz
    An $h$-multigrid method for Hybrid High-Order discretizations
    SIAM J. Sci. Comput., 2021, 43(5):S839–S861. DOI: 10.1137/20M1342471
    HAL preprint hal-02434411

    23) M. Botti, D. A. Di Pietro, O. Le Maître, and P. Sochala
    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods
    Comput. Meth. Appl. Mech. Engrg., 2020, 361(112736). DOI: 10.1016/j.cma.2019.112736
    HAL preprint hal-02081647, arXiv preprint 1903.11885 [math.NA]

    24) M. Botti, D. A. Di Pietro, and P. Sochala
    A Hybrid High-Order discretisation method for nonlinear poroelasticity
    Comput. Meth. Appl. Math., 2020, 20(2):227–249. DOI: 10.1515/cmam-2018-0142
    HAL preprint hal-01785810, arXiv preprint 1906.00757 [math.NA]

    25) D. Castañón Quiroz and D. A. Di Pietro
    A Hybrid High-Order method for the incompressible Navier–Stokes problem robust for large irrotational body forces
    Comput. Math. Appl., 2020, 79(8):2655–2677. DOI: 10.1016/j.camwa.2019.12.005
    HAL preprint hal-02151236

    26) D. A. Di Pietro, J. Droniou, and F. Rapetti
    Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra
    Math. Models Methods Appl. Sci., 2020, 30(9):1809-1855. DOI: 10.1142/S0218202520500372
    HAL preprint hal-02356810, arXiv preprint 1911.03616 [math.NA]

    27) M. Botti, D. A. Di Pietro, and A. Guglielmana
    A low-order nonconforming method for linear elasticity on general meshes
    Comput. Meth. Appl. Mech. Engrg., 2019, 354:96–118. DOI: 10.1016/j.cma.2019.05.031
    HAL preprint hal-02009407, arXiv preprint 1902.02316 [math.NA]

    28) L. Botti, D. A. Di Pietro, and J. Droniou
    A Hybrid High-Order method for the incompressible Navier–Stokes equations based on Temam's device
    J. Comput. Phys., 2019, 376:786–816. DOI: 10.1016/j.jcp.2018.10.014
    HAL preprint hal-01867134, arXiv preprint 1807.07345 [math.NA]

    29) F. Chave, D. A. Di Pietro, and L. Formaggia
    A Hybrid High-Order method for passive transport in fractured porous media
    Int. J. Geomath., 2019, 10(12). DOI: 10.1007/s13137-019-0114-x. URL: https://rdcu.be/bjHYw
    HAL preprint hal-01784181

    30) T. Lelièvre, S. Perotto, G. Rozza, D. A. Di Pietro, A. Ern, and L. Formaggia
    Preface: Special Issue on Model Reduction
    J. Sci. Comput., 2019, 81:1–2. [Editorial]. DOI: 10.1007/s10915-019-01037-7

    31) J. Aghili and D. A. Di Pietro
    An advection-robust Hybrid High-Order method for the Oseen problem
    J. Sci. Comput., 2018, 77(3):1310–1338. DOI: 10.1007/s10915-018-0681-2
    HAL preprint hal-01658263, arXiv preprint 1712.02625 [math.NA]

    32) D. Boffi and D. A. Di Pietro
    Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes
    ESAIM: Math. Model Numer. Anal., 2018, 52(1):1–28. DOI: 10.1051/m2an/2017036
    HAL preprint hal-01365938, arXiv preprint 1609.04601 [math.NA]

    33) F. Bonaldi, D. A. Di Pietro, G. Geymonat, and F. Krasucki
    A Hybrid High-Order method for Kirchhoff–Love plate bending problems
    ESAIM: Math. Model Numer. Anal., 2018, 52(2):393–421. DOI: 10.1051/m2an/2017065
    HAL preprint hal-01541389, arXiv preprint 1706.06781 [math.NA]

    34) L. Botti, D. A. Di Pietro, and J. Droniou
    A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits
    Comput. Meth. Appl. Mech. Engrg., 2018, 341:278–310. DOI: 10.1016/j.cma.2018.07.004
    HAL preprint hal-01746367, arXiv preprint 1803.10964 [math.NA]

    35) L. Botti and D. A. Di Pietro
    Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods
    J. Comput. Phys., 2018, 370:58–84. DOI: 10.1016/j.jcp.2018.05.017
    HAL preprint hal-01581883

    36) F. Chave, D. A. Di Pietro, and L. Formaggia
    A Hybrid High-Order method for Darcy flows in fractured porous media
    SIAM J. Sci. Comput., 2018, 40(2):A1063–A1094. DOI: 10.1137/17M1119500
    HAL preprint hal-01482925

    37) M. Cicuttin, D. A. Di Pietro, and A. Ern
    Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming
    J. Comput. Appl. Math., 2018, 344:852–874. DOI: 10.1016/j.cam.2017.09.017
    HAL preprint hal-01429292

    38) D. A. Di Pietro, J. Droniou, and G. Manzini
    Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes
    J. Comput. Phys., 2018, 355:397–425. DOI: 10.1016/j.jcp.2017.11.018
    HAL preprint hal-01564598, arXiv preprint 1706.09683 [math.NA]

    39) D. A. Di Pietro and J. Droniou
    A third Strang lemma and an Aubin–Nitsche trick for schemes in fully discrete formulation
    Calcolo, 2018, 55(40). DOI: 10.1007/s10092-018-0282-3. URL: https://rdcu.be/5L8F
    HAL preprint hal-01778044, arXiv preprint 1804.09484 [math.NA]

    40) D. A. Di Pietro and S. Krell
    A Hybrid High-Order method for the steady incompressible Navier–Stokes problem
    J. Sci. Comput., 2018, 74(3):1677–1705. DOI: 10.1007/s10915-017-0512-x
    HAL preprint hal-01349519, arXiv preprint 1607.08159 [math.NA]

    41) D. A. Di Pietro and F. Marche
    Weighted Interior Penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows
    J. Comput. Phys., 2018, 355:285–309. DOI: 10.1016/j.jcp.2017.11.009
    HAL preprint hal-01566446

    42) J. Aghili, D. A. Di Pietro, and B. Ruffini
    An $hp$-Hybrid High-Order method for variable diffusion on general meshes
    Comput. Meth. Appl. Math., 2017, 17(3):359–376. DOI: 10.1515/cmam-2017-0009
    HAL preprint hal-01290251

    43) M. Botti, D. A. Di Pietro, and P. Sochala
    A Hybrid High-Order method for nonlinear elasticity
    SIAM J. Numer. Anal., 2017, 55(6):2687–2717. DOI: 10.1137/16M1105943
    HAL preprint hal-01539510, arXiv preprint 1707.02154 [math.NA]

    44) D. A. Di Pietro and J. Droniou
    $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems
    Math. Models Methods Appl. Sci., 2017, 27(5):879–908. DOI: 10.1142/S0218202517500191
    HAL preprint hal-01326818, arXiv preprint 1606.02832 [math.NA]

    45) D. A. Di Pietro and J. Droniou
    A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes
    Math. Comp., 2017, 86(307):2159–2191. DOI: 10.1090/mcom/3180
    HAL preprint hal-01183484, arXiv preprint 1508.01918 [math.NA]

    46) D. A. Di Pietro and A. Ern
    Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes
    IMA J. Numer. Anal., 2017, 37(1):40–63. DOI: 10.1093/imanum/drw003
    HAL preprint hal-00918482

    47) D. A. Di Pietro, B. Kapidani, R. Specogna, and F. Trevisan
    An arbitrary-order discontinuous skeletal method for solving electrostatics on general polyhedral meshes
    IEEE Transactions on Magnetics, 2017, 53(6):1–4. DOI: 10.1109/TMAG.2017.2666546
    HAL preprint hal-01399505

    48) R. Riedlbeck, D. A. Di Pietro, A. Ern, S. Granet, and K. Kazymyrenko
    Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis
    Comput. Math. Appl., 2017, 73(7):1593–1610. DOI: 10.1016/j.camwa.2017.02.005
    HAL preprint hal-01366646

    49) D. Boffi, M. Botti, and D. A. Di Pietro
    A nonconforming high-order method for the Biot problem on general meshes
    SIAM J. Sci. Comput., 2016, 38(3):A1508–A1537. DOI: 10.1137/15M1025505
    HAL preprint hal-01162976, arXiv preprint 1506.03722 [math.NA]

    50) F. Chave, D. A. Di Pietro, F. Marche, and F. Pigeonneau
    A Hybrid High-Order method for the Cahn–Hilliard problem in mixed form
    SIAM J. Numer. Anal., 2016, 54(3):1873–1898. DOI: 10.1137/15M1041055
    HAL preprint hal-01203733, arXiv preprint 1509.07384 [math.NA]

    51) B. Cockburn, D. A. Di Pietro, and A. Ern
    Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods
    ESAIM: Math. Model Numer. Anal., 2016, 50(3):635–650. DOI: 10.1051/m2an/2015051
    HAL preprint hal-01115318

    52) D. A. Di Pietro, A. Ern, A. Linke, and F. Schieweck
    A discontinuous skeletal method for the viscosity-dependent Stokes problem
    Comput. Meth. Appl. Mech. Engrg., 2016, 306:175–195. DOI: 10.1016/j.cma.2016.03.033
    HAL preprint hal-01244387

    53) D. A. Di Pietro and R. Specogna
    An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics
    J. Comput. Phys., 2016, 326(1):35–55. DOI: 10.1016/j.jcp.2016.08.041
    HAL preprint hal-01310313

    54) J. Aghili, S. Boyaval, and D. A. Di Pietro
    Hybridization of mixed high-order methods on general meshes and application to the Stokes equations
    Comput. Meth. Appl. Math., 2015, 15(2):111–134. DOI: 10.1515/cmam-2015-0004
    HAL preprint hal-01009723

    55) J. Bonelle, D. A. Di Pietro, and A. Ern
    Low-order reconstruction operators on polyhedral meshes: Application to Compatible Discrete Operator schemes
    Computer Aided Geometric Design, 2015, 35–36:27–41. DOI: 10.1016/j.cagd.2015.03.015
    HAL preprint hal-01097311

    56) D. A. Di Pietro, J. Droniou, and A. Ern
    A discontinuous-skeletal method for advection-diffusion-reaction on general meshes
    SIAM J. Numer. Anal., 2015, 53(5):2135–2157. DOI: 10.1137/140993971
    HAL preprint hal-01079342, arXiv preprint 1411.0098 [math.NA]

    57) D. A. Di Pietro and A. Ern
    Equilibrated tractions for the Hybrid High-Order method
    C. R. Acad. Sci. Paris, Ser. I, 2015, 353:279–282. DOI: 10.1016/j.crma.2014.12.009
    HAL preprint hal-01079026, arXiv preprint 1411.0094 [math.NA]

    58) D. A. Di Pietro and A. Ern
    Hybrid high-order methods for variable-diffusion problems on general meshes
    C. R. Acad. Sci. Paris, Ser. I, 2015, 353:31–34. DOI: 10.1016/j.crma.2014.10.013
    HAL preprint hal-01023302

    59) D. A. Di Pietro and A. Ern
    A hybrid high-order locking-free method for linear elasticity on general meshes
    Comput. Meth. Appl. Mech. Engrg., 2015, 283:1–21. DOI: 10.1016/j.cma.2014.09.009
    HAL preprint hal-00979435

    60) D. A. Di Pietro and S. Lemaire
    An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow
    Math. Comp., 2015, 84(291):1–31. DOI: 10.1090/S0025-5718-2014-02861-5
    HAL preprint hal-00753660

    61) D. A. Di Pietro, M. Vohralík, and S. Yousef
    Adaptive regularization, linearization, discretization, and a posteriori error control for the two-phase Stefan problem
    Math. Comp., 2015, 84(291):153–186. DOI: 10.1090/S0025-5718-2014-02854-8
    HAL preprint hal-00690862

    62) D. A. Di Pietro, A. Ern, and S. Lemaire
    An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators
    Comput. Meth. Appl. Math., 2014, 14(4):461–472. Open access (editor's choice). DOI: 10.1515/cmam-2014-0018
    HAL preprint hal-00978198

    63) D. A. Di Pietro, E. Flauraud, M. Vohralík, and S. Yousef
    A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media
    J. Comput. Phys., 2014, 274:163–187. DOI: 10.1016/j.jcp.2014.06.061
    HAL preprint hal-00839487

    64) D. A. Di Pietro, M. Vohralík, and S. Yousef
    An a posteriori-based, fully adaptive algorithm for thermal multiphase compositional flows in porous media with adaptive mesh refinement
    Comput. Math. Appl., 2014, 68(12):2331–2347. DOI: 10.1016/j.camwa.2014.08.008
    HAL preprint hal-00856437

    65) D. A. Di Pietro and M. Vohralík
    A review of recent advances in discretization methods, a posteriori error analysis, and adaptive algorithms for numerical modeling in geosciences
    Oil & Gas Science and Technology, 2014, 69(4):701–730. DOI: 10.2516/ogst/2013158
    HAL preprint hal-00783068

    66) D. A. Di Pietro, J.-M. Gratien, and C. Prud'homme
    A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes
    BIT Numerical Mathematics, 2013, 53(1):111–152. DOI: 10.1007/s10543-012-0403-3
    HAL preprint hal-00654406

    67) D. A. Di Pietro and S. Nicaise
    A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media
    App. Num. Math., 2013, 63:105–116. DOI: 10.1016/j.apnum.2012.09.009
    HAL preprint hal-00685020

    68) D. A. Di Pietro
    On the conservativity of cell centered Galerkin methods
    C. R. Acad. Sci. Paris, Ser. I, 2013, 351(3–4):155–159. DOI: 10.1016/j.crma.2013.03.001
    HAL preprint hal-00781510

    69) F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini
    On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations
    J. Comput. Phys., 2012, 231(1):45–65. DOI: 10.1016/j.jcp.2011.08.018
    HAL preprint hal-00562219

    70) D. A. Di Pietro and A. Ern
    Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions
    Numer. Meth. for PDEs, 2012, 28(4):1161–1177. DOI: 10.1002/num.20675
    HAL preprint hal-00514387

    71) D. A. Di Pietro
    Cell centered Galerkin methods for diffusive problems
    ESAIM: Math. Model Numer. Anal., 2012, 46(1):111–144. DOI: 10.1051/m2an/2011016
    HAL preprint hal-00511125

    72) L. Botti and D. A. Di Pietro
    A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure
    J. Comput. Phys., 2011, 230(3):572–585. DOI: 10.1016/j.jcp.2010.10.004
    HAL preprint hal-00458293

    73) D. A. Di Pietro
    A compact cell-centered Galerkin method with subgrid stabilization
    C. R. Acad. Sci. Paris, Ser. I, 2011, 349(1–2):93–98. DOI: 10.1016/j.crma.2010.11.017
    HAL preprint hal-00476222

    74) L. Agélas, D. A. Di Pietro, and J. Droniou
    The G method for heterogeneous anisotropic diffusion on general meshes
    ESAIM: Math. Model Numer. Anal., 2010, 44(4):597–625. DOI: 10.1051/m2an/2010021
    HAL preprint hal-00342739

    75) L. Agélas, D. A. Di Pietro, R. Eymard, and R. Masson
    An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes
    IJFV International Journal on Finite Volumes, 2010, 7(1):1–29
    HAL preprint hal-00318390

    76) D. A. Di Pietro and A. Ern
    Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations
    Math. Comp., 2010, 79:1303–1330. DOI: 10.1090/S0025-5718-10-02333-1
    HAL preprint hal-00278925

    77) D. A. Di Pietro
    Cell centered Galerkin methods
    C. R. Acad. Sci. Paris, Ser. I, 2010, 348(1–2):31–34. DOI: 10.1016/j.crma.2009.11.012
    HAL preprint hal-00398782

    78) D. A. Di Pietro and A. Veneziani
    Expression template implementation of continuous and discontinuous Galerkin methods
    Comp. Vis. in Sci., 2009, 12:421–436. DOI: 10.1007/s00791-008-0117-x
    HAL preprint hal-01818198

    79) D. A. Di Pietro, A. Ern, and J.-L. Guermond
    Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection
    SIAM J. Numer. Anal., 2008, 46(2):805–831. DOI: 10.1137/060676106
    HAL preprint hal-01818201

    80) F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay
    An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows
    Comp. & Fl., 2007, 36(10):1529–1546. DOI: 10.1016/j.compfluid.2007.03.012
    HAL preprint hal-01818204

    81) D. A. Di Pietro
    Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux
    Int. J. Num. Meth. Fluids, 2007, 55(8):793–813. DOI: 10.1002/fld.1495
    HAL preprint hal-01818207

    82) F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay
    An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations
    J. Comput. Phys., 2006, 218(2):794–815. DOI: 10.1016/j.jcp.2006.03.006
    HAL preprint hal-01818209

    83) D. A. Di Pietro, S. Lo Forte, and N. Parolini
    Mass preserving finite element implementations of the level set method
    App. Num. Math., 2006, 56:1179–1195. DOI: 10.1016/j.apnum.2006.03.003
    HAL preprint hal-01818211

    84) G. E. Cossali, D. A. Di Pietro, and M. Marengo
    Comparison of four analytical and numerical models for a microchannel heat sink
    Int. J. Heat and Tech., 2003, 21(2):31–42
    HAL preprint hal-01820286

    Book chapters (4)

    1) L. Botti, M. Botti, and D. A. Di Pietro
    A Hybrid High-Order method for multiple-network poroelasticity
    in Polyhedral Methods in Geosciences, D. A. Di Pietro, L. Formaggia, R. Masson eds., Springer, 2021, p. 227–258
    DOI: 10.1007/978-3-030-69363-3_6 , ISBN: 978-3-030-69362-6
    HAL preprint hal-02461755

    2) D. A. Di Pietro, A. Ern, and L. Formaggia
    An introduction to recent developments in numerical methods for partial differential equations
    in Numerical Methods for PDEs: State of the Art Techniques, D. A. Di Pietro, A. Ern, L. Formaggia eds., Springer, 2018, p. 1–4
    DOI: 10.1007/978-3-319-94676-4_1 , ISBN: 978-3-319-94675-7 (Print) 978-3-319-94676-4 (eBook)
    HAL preprint hal-01490524, arXiv preprint 1703.05136 [math.NA]

    3) D. A. Di Pietro and R. Tittarelli
    An introduction to Hybrid High-Order methods
    in Numerical Methods for PDEs: State of the Art Techniques, D. A. Di Pietro, A. Ern, L. Formaggia eds., Springer, 2018, p. 75–128
    DOI: 10.1007/978-3-319-94676-4_4 , ISBN: 978-3-319-94675-7 (Print) 978-3-319-94676-4 (eBook)
    HAL preprint hal-01490524, arXiv preprint 1703.05136 [math.NA]

    4) D. A. Di Pietro, A. Ern, and S. Lemaire
    A review of Hybrid High-Order methods: formulations, computational aspects, comparison with other methods
    in Building bridges: Connections and challenges in modern approaches to numerical partial differential equations, Barrenechea, G. and Brezzi, F. and Cangiani, A. and Georgoulis, M. eds., Springer, 2016, p. 205–236
    DOI: 10.1007/978-3-319-41640-3 , ISBN: 978-3-319-41638-0 (Print) 978-3-319-41640-3 (eBook)
    HAL preprint hal-01163569

    Preprints (3)

    1) D. A. Di Pietro and M.-L. Hanot
    A discrete three-dimensional divdiv complex on polyhedral meshes with application to a mixed formulation of the biharmonic problem
    HAL preprint hal-04093192, arXiv preprint 2305.05729 [math.NA], May 2023

    2) F. Bonaldi, D. A. Di Pietro, J. Droniou, and K. Hu
    An exterior calculus framework for polytopal methods
    HAL preprint hal-04037653, arXiv preprint 2303.11093 [math.NA], March 2023

    3) I. Fontana, K. Kazymyrenko, and D. A. Di Pietro
    Hyperelastic nature of the Hoek–Brown criterion
    HAL preprint hal-03501788, December 2021

    Proceedings (19)

    1) F. Chave, D. A. Di Pietro, and S. Lemaire
    A three-dimensional Hybrid High-Order method for magnetostatics
    Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples, 2020 p. 255–263
    DOI: 10.1007/978-3-030-43651-3_22
    Preprint hal-02407175

    2) M. Botti, D. A. Di Pietro, and P. Sochala
    A nonconforming high-order method for nonlinear poroelasticity
    Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems, 2017 p. 537–546
    DOI: 10.1007/978-3-319-57397-7
    Preprint hal-01439165

    3) F. Chave, D. A. Di Pietro, and F. Marche
    A Hybrid High-Order method for the convective Cahn–Hilliard problem in mixed form
    Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems, 2017 p. 517–526
    DOI: 10.1007/978-3-319-57397-7
    Preprint hal-01477247

    4) D. A. Di Pietro and S. Krell
    Benchmark session: The 2D Hybrid High-Order method
    Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects, 2017 p. 91–106
    DOI: 10.1007/978-3-319-57397-7
    Preprint hal-01818217

    5) R. Riedlbeck, D. A. Di Pietro, and A. Ern
    Equilibrated stress reconstruction for linear elasticity problems with application to a posteriori error analysis
    Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects, 2017 p. 293–302
    Preprint hal-01433841

    6) D. A. Di Pietro, R. Eymard, S. Lemaire, and R. Masson
    Hybrid finite volume discretization of linear elasticity models on general meshes
    Finite Volumes for Complex Applications VI, 2011 p. 331–339
    DOI: 10.1007/978-3-642-20671-9_35
    Preprint hal-00795201

    7) D. A. Di Pietro and J.-M. Gratien
    Lowest order methods for diffusive problems on general meshes: A unified approach to definition and implementation
    Finite Volumes for Complex Applications VI, 2011 p. 3–19. Invited paper
    DOI: 10.1007/978-3-642-20671-9_84
    Preprint hal-00562500

    8) D. A. Di Pietro, M. Vohralík, and C. Widmer
    An a posteriori error estimator for a finite volume discretization of two-phase flow
    Finite Volumes for Complex Applications VI, 2011 p. 341–349
    DOI: 10.1007/978-3-642-20671-9_36

    9) L. Agélas, D. A. Di Pietro, and I. Kapyrin
    A comparison of last generation cell centered finite volume methods on challenging three dimensional problems
    Proceedings of the 3rd International Conference on Approximation Methods and numerical Modeling in Environment and Natural Resources, 2009

    10) L. Agélas, D. A. Di Pietro, I. Kapyrin, and R. Masson
    Generalized L-scheme for the discretization of diffusion fluxes on general meshes
    Proceedings of the 11th European Conference on the Mathematics of Oil Recovery, 2008

    11) L. Agélas, D. A. Di Pietro, R. Eymard, and R. Masson
    A general framework for non-conforming approximations of the single phase Darcy equation
    Proceedings of the 11th European Conference on the Mathematics of Oil Recovery, 2008

    12) L. Agélas, D. A. Di Pietro, I. Kapyrin, and R. Masson
    The MPFA G scheme for heterogeneous anisotropic diffusion problems on general meshes
    Proceedings of the 11th European Conference on the Mathematics of Oil Recovery, 2008

    13) L. Agélas, D. A. Di Pietro, and R. Masson
    A symmetric and coercive finite volume scheme for multiphase porous media flow with applications in the oil industry
    Finite Volumes for Complex Applications V, 2008 p. 35–52. Invited paper
    Preprint hal-01818220
    ISBN: 978-1-84821-035-6

    14) L. Agélas and D. A. Di Pietro
    A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic problems
    Finite Volumes for Complex Applications V, 2008 p. 705–716
    ISBN: 978-1-84821-035-6

    15) D. A. Di Pietro and A. Ern
    A discontinuous Galerkin flux for anisotropic heterogeneous second-order elliptic problems
    Finite Volumes for Complex Applications V, 2008 p. 777–793
    Preprint hal-01818221
    ISBN: 978-1-84821-035-6

    16) S. Mundal, D. A. Di Pietro, and I. Aavatsmark
    Compact-stencil MPFA method for heterogeneous highly-anisotropic second order elliptic problems
    Finite Volumes for Complex Applications V, 2008 p. 905–918
    Preprint hal-01818222
    ISBN: 978-1-84821-035-6

    17) F. Bassi, A. Crivellini, D. A. Di Pietro, and S. Rebay
    A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows
    ECCOMAS CFD 2006 Proceedings (Egmond an Zee, Netherlands), 2006

    18) G. E. Cossali, D. A. Di Pietro, and M. Marengo
    Analytical and numerical modeling of microchannel heat sinks
    Proceedings of the First International Conference on Microchannels and Minichannels (Rochester, New York), 2003

    19) G. E. Cossali, D. A. Di Pietro, and M. Marengo
    Design of a microchannel cooling system for BTeV particle detector
    Proceedings of the 8th International Workshop on Thermal Investigations of ICs and Systems (Madrid, Spain), 2002

    Theses (2)

    1) D. A. Di Pietro
    Méthodes non conformes pour des équations aux dérivées partielles avec diffusion
    HDR thesis, Université de Paris-Est, 6 December 2010
    Manuscript tel-00550230

    2) D. A. Di Pietro
    Discontinuous Galerkin methods for the incompressible Navier–Stokes equations
    PhD thesis, Università di Bergamo, 3 March 2006

    Some presentations

    1) Discrete de Rham (DDR) methods for continuum mechanics [slides]
    Journées d'Occitanie en Mathématiques Appliquées, 8 June 2023

    2) Discrete de Rham methods for mixed formulations [slides]
    M2P, 30 May 2023

    3) Discrete de Rham (DDR) complexes for compatible approximations of physical problems on general meshes [slides]
    MOX, Politecnico di Milano, 26 May 2023

    4) An introduction to discrete de Rham methods. A polytopal exterior calculus framework [slides]
    Journées Ondes du Sud-Ouest, 15 March 2023

    5) Hybrid High-Order methods for the incompressible Navier–Stokes equations [slides]
    Onera, 9 December 2022

    6) A Hybrid High-Order method for the incompressible Navier–Stokes problem robust for large irrotational body forces [slides]
    SIAM AN22, 14 July 2022

    7) From physical models to advanced numerical methods through de Rham cohomology [slides]
    100 years Unione Matematica Italiana / 800 years Università di Padova, 27 May 2022

    8) From physical models to advanced numerical methods through de Rham cohomology [slides]
    EPFL, 19 January 2022

    9) Hybrid High-Order methods for Darcean flows in complex porous media [slides]
    SimRace 2021, 2 December 2021. [impermeable fractures], [permeable fractures], [a peculiar fracture pattern]

    10) Arbitrary-order fully discrete complexes on polyhedral meshes [slides] [video]
    ICOSAHOM 2020 2021, 14 July 2021

    11) A discrete exact grad-curl-div complex on generic polyhedral meshes. Part I: Algebraic properties [slides] [video]
    USNCCM16 16th U.S. National Congress on Computational Mechanics, 25 July 2021

    12) Fully discrete polynomial de Rham complexes on polyhedral meshes with application to magnetostatics [slides]
    INdAM workshop Polygonal methods for PDEs: theory and applications, Rome (virtual), 17 May 2021

    13) Hybrid High-Order methods for nonlinear problems [slides]
    Seminario del Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, 13 May 2021. Leray–Lions and nonlinear Stokes problems

    14) Hybrid High-Order methods for nonlinear problems [slides]
    Bi.discrete seminar, Universität Bielefeld, 6 April 2021. Leray–Lions and nonlinear elasticity problems

    15) Fully discrete polynomial de Rham complexes on polyhedral meshes with application to magnetostatics [slides]
    SIAM CSE21, 1 March 2021

    16) Recent advances on fully discrete methods for polyhedral meshes [video]
    WCCM-ECCOMAS 2020, 14 January 2021

    17) An arbitrary-order discrete de Rham complex on polyhedral meshes [slides]
    Mathematisches Forschungsinstitut Oberwolfach, Nonstandard Finite Element Methods workshop, 12 January 2021

    18) Fully discrete polynomial de Rham sequences of arbitrary degree on polyhedral meshes [slides]
    Université de Montpellier, 12 December 2020

    19) Fully discrete polynomial de Rham sequences of arbitrary degree on polyhedral meshes [slides]
    Università di Padova, 6 November 2020

    20) Hybrid High-Order methods for poroelasticity [slides]
    IFP Energies Nouvelles, 4 December 2019

    21) Hybrid High-Order methods for poroelasticity [slides]
    Université de Franche-Comté, 2 October 2019

    22) Recent advances on Hybrid High-Order methods for problems in incompressible fluid mechanics [slides]
    ICIAM 2019, 16 July 2019

    23) Hybrid High-Order methods for diffusion problems on polytopes and curved elements [slides]
    MAFELAP 2019, 19 June 2019

    24) An introduction to Hybrid High-Order methods with applications to incompressible fluid mechanics [slides]
    Université de Nice Sophia Antipolis, 16 May 2019

    25) Hybrid High-Order methods for elasticity [slides]
    POEMS 2019, 3 May 2019

    26) An introduction to Hybrid High-Order methods with applications to incompressible fluid mechanics [slides]
    SISSA, 7 March 2019

    27) A Hybrid High-Order method for incompressible Navier–Stokes equations based on Temam's device [slides]
    Università di Udine, 30 October 2018

    28) A Hybrid High-Order method for incompressible Navier–Stokes equations based on Temam's device [slides]
    EDF, 28 June 2018

    29) An introduction to Hybrid High-Order methods with application to the incompressible Navier–Stokes equations [slides]
    Montpellier, 19 June 2018

    30) A non-standard application of the Raviart–Thomas–Nédélec element: A HHO method for the Brinkman problem robust in the Darcy and Stokes limits [slides]
    CANUM 2018, 29 May 2018. See also here for a stable high-order gradient reconstruction on general meshes based on the Raviart–Thomas–Nédélec element

    31) An introduction to the convergence analysis of discretisation methods for PDEs with application to Hybrid High-Order methods [slides]
    Università di Bergamo, 10-11 May 2018. See also here for the discrete analysis framework and here for an introduction to HHO methods

    32) An introduction to Hybrid High-Order methods [slides]
    CERFACS, 9 February 2018

    33) An introduction to Hybrid High-Order methods - Nonlinear elasticity and poroelasticity [slides]
    Università di Bergamo, 19 December 2017

    34) An introduction to Hybrid High-Order methods - Nonlinear elasticity and poroelasticity [slides]
    Journées Multiphasiques et Incertitudes, Nantes, 14 November 2017

    35) Recent advances on Hybrid High-Order methods for linear and nonlinear problems [slides]
    POEMS 2017, Milan, 5 July 2017

    36) Recent advances on Hybrid High-Order methods for nonlinear problems [slides]
    MOX, Politecnico di Milano, 20 December 2016

    37) Hybrid High-Order methods [slides]
    Institut Henri Poincaré thematic quarter Numerical Methods for PDEs, 13-14 September 2016

    38) A Hybrid High-Order method for Leray–Lions equations [slides]
    MAFELAP 2016, 16 June 2016

    39) Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin Methods [slides]
    MAFELAP 2016, 15 June 2016

    40) Hybrid High-Order methods on general meshes [slides]
    Universität Zürich, 20 April 2016

    41) An a posteriori-based fully adaptive algorithm for the two-phase Stefan problem [slides]
    Università di Pavia, 23 February 2016

    42) A Hybrid High-Order method for locally degenerate advection-diffusion-reaction [slides]
    X-DMS 2015, Ferrara, 10 September 2015

    43) An introduction to Hybrid High-Order methods [slides]
    CEA-EDF-INRIA School New trends in Compatible Discretizations, INRIA Roquencourt, 29 June 2015

    44) Hybrid High-Order (HHO) methods on general meshes [slides]
    Journée Méthode de Galerkine discontinue et ses applications, CNAM, Paris, 19 June 2015

    45) Hybrid and mixed high-order methods [slides]
    Università Milano Bicocca, 12 February 2015

    46) Hybrid High-Order methods for degenerate advection-diffusion-reaction [slides]
    Séminaire Modélisation mathématique et calcul scientifique ICJ, Lyon, 20 January 2015

    47) Hybrid high-order methods for quasi-incompressible linear elasticity on general meshes [slides]
    WCCM XI, Barcelona, 24 July 2014

    48) A family of arbitrary-order mixed methods for anisotropic heterogeneous diffusion [slides]
    GT Calcul Scientifique, UM2, 14 February 2014

    49) A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media [slides]
    LATP, Université Aix Marseille, 1 October 2013

    50) Discontinuous Galerkin methods and applications [slides]
    École de Mécanique des Fluides Numériques, Porquerolles, 2–8 June 2013

    51) An extension of the Crouzeix–Raviart and Raviart–Thomas spaces to general meshes [slides]
    MOX, Politecnico di Milano, 26 February 2013

    52) A hybrid finite volume generalization of the Crouzeix-Raviart element [slides]
    GDR MoMaS workshop, Marseille, 15 October 2012

    53) Locking-free numerical approximations of the elasticity operator [slides]
    Workshop on complex grids and fluid flows, 2 April 2012

    54) Cell centered Galerkin methods for diffusive problems on general meshes [slides]
    Università di Bergamo, 21 December 2011

    55) Recent advances on nonconforming methods for diffusive problems on general meshes [slides]
    University of Montpellier 2, 8 November 2011

    56) Lowest order methods for diffusive problems on general meshes [slides]
    Finite Volumes for Complex Applications VI, Prague, 8 June 2011

    57) Nonconforming methods for PDEs with diffusion [slides]
    University of Sussex, Brighton, 6 May 2011

    Press

    MaddMaths interview (in Italian)

    Teaching

    Teaching component Faculté des Sciences
    Teaching department Département de Mathématiques
    Highlights Master Modélisation et Analyse Numérique

    Analyse Numérique 4 (HAX905X)

    Aller à la playlist du cours

    1. Annexe A et Chapitre 1 : Cadre général
    2. Chapitre 2 : HHO pour Poisson
    3. Sections 5.1 et 5.4 : Compléments
    4. Annexe B : Implémentation

    Algèbre Linéaire Numérique (HAX406X)

    Télécharger les notes du cours (version provisoire permanente). Aller à la playlist du cours

    1. Introduction
    2. Chapitre 1 : Rappels et compléments
      • Cours 1 (jusqu'à l'Exercice 1.8)
      • Cours 2 (de la Proposition 1.9 jusqu'à la Remarque 1.16
      • Cours 3 (de l'Exemple 1.17 jusqu'à l'Exemple 1.25)
      • Cours 4 (de la Proposition 1.26 jusqu'à la fin de la Section 1.4.1)
      • Cours 5 (de la Section 1.4.2 jusqu'à la fin du Chapitre 1)
      • TD 1 (preuve de la Proposition 1.48, regarder à la suite du Cours 5)
      • TD 2 (Exercices 1.51, 1.52, 1.53)
      • TD 3 (Exercices 1.54, 1.55, 1.64)
    3. Chapitre 2 : Méthodes directes
    4. Chapitre 3 : Méthodes itératives
      • Cours 12 (jusqu'à la preuve du Lemme 3.2)
      • Cours 13 (fin de la Section 3.1.1 et Section 3.1.2)
      • TD 6 (Exercice 3.15)
      • TD 7 (Exercice 3.16)
      • TD 8 (Exercice 3.17)
    5. Compléments

    Modélisation Numérique (HMMA436)

    Aller à la playlist du cours

    Updated 7/6/2023